sdz-psc-833 has been researched along with morphine-6-glucuronide* in 2 studies
1 trial(s) available for sdz-psc-833 and morphine-6-glucuronide
Article | Year |
---|---|
Effect of P-glycoprotein modulation on the clinical pharmacokinetics and adverse effects of morphine.
To investigate the effect of acute P-glycoprotein inhibition by the multidrug-resistance (MDR) modulator valspodar (SDZ PSC 833; PSC) on the pharmacokinetics, and potentially adverse pharmacodynamic effects of morphine, and its principal pharmacologically active metabolites, morphine-3-glucuronide (M3G) and morphine-6-glucuronide (M6G).. In a double-blind, three-way crossover study, the pharmacokinetic and potentially adverse pharmacodynamic effects (reaction time, transcutaneous PCO2, blood pressure) of morphine were compared with and without acute inhibition of P-glycoprotein by PSC. The effects of PSC alone were also evaluated. The study was performed in 18 healthy male volunteers and pharmacodynamic effects analysed by measuring the area under the effect (AUE) curve. 150 mg PSC (or its placebo) was given as an i.v. infusion over 2 h. With the expected inhibition of Pgp 1 h after starting PSC infusion, 7.5 morphine HCl (or its placebo) was infused over 2 h.. The infusion of PSC resulted in blood concentrations expected to inhibit Pgp mediated transport. While the pharmacokinetics of plasma morphine and M6G. were unaffected there was a small but statistically significant increase in the AUC and Cmax of M3G (11.8 and 8.3%, respectively). The t(1/2) and tmax were unaffected. The pharmacokinetic parameters of PSC were not affected by coadministration with morphine. PSC did not significantly affect the adverse events of morphine, as assessed by spontaneous reporting. Compared with PSC alone, morphine elicited an increase in reaction time (Emax 48 ms, compared with the predose absolute reaction time of 644 ms), which was not detected by the alertness-drowsiness score, indicating only slight sedation. There was a significant decrease in systolic blood pressure (Emin -9 mm Hg), and a trend for a fall in diastolic blood pressure (Emin -14.5 mm Hg) and respiratory rate (Emin -1.8 breath x min(-1)). For all these parameters, the effects of PSC/morphine were similar to that of PSC alone, suggesting some attenuation of morphine's effect. In contrast, morphine caused a significant increase in PCO2 (Emax 0.69 kPa) compared to PSC alone, indicating slight respiratory depression. This increase was similar to that of the PSC/morphine combination.. Acute inhibition of P-glycoprotein by PSC in this setting does not affect the pharmacokinetic or safety-related pharmacodynamic profile of morphine in a clinically significant manner. Topics: Adult; Analgesics, Opioid; Area Under Curve; ATP Binding Cassette Transporter, Subfamily B; Blood Gas Monitoring, Transcutaneous; Cross-Over Studies; Cyclosporins; Double-Blind Method; Drug Interactions; Half-Life; Humans; Injections, Intravenous; Male; Morphine; Morphine Derivatives; Reaction Time; Sleep Stages | 2000 |
1 other study(ies) available for sdz-psc-833 and morphine-6-glucuronide
Article | Year |
---|---|
Increased CNS uptake and enhanced antinociception of morphine-6-glucuronide in rats after inhibition of P-glycoprotein.
Morphine-6-glucuronide (M6G) is a substrate of P-glycoprotein (P-gp), which forms an outward transporter at the blood-brain barrier. Inhibition of P-gp may therefore be expected to cause increased CNS uptake of M6G. We directly assessed the spinal concentrations of M6G and its antinociceptive effects in rats following pharmacological inhibition of P-gp. Spinal cord tissue concentrations of M6G were assessed by microdialysis with probes transversally implanted through the dorsal horns of the spinal cord at level L4. Ten rats received M6G intravenously (0.018 mg/kg loading dose plus 0.00115 mg/kg/min for an 8-h infusion), five of them together with PSC833 to inhibit P-gp (32-h infusion, starting 24 h before the addition of M6G). Antinociceptive effects were explored by means of formalin tests. After having obtained evidence for enhanced CNS uptake and antinociception of M6G in the presence of PSC833, additional behavioural experiments were performed in another 32 rats to assess the dose dependency of the antinociceptive effects of M6G either with or without PSC833 in comparison with both PSC833 alone and placebo. Inhibition of P-gp increased the M6G concentrations in the spinal cord approximately three-fold whereas the plasma concentrations were increased only by a factor of 1.4, which resulted in a more than doubled spinal cord/plasma concentration ratio (from 0.08 +/- 0.03 for M6G alone to 0.17 +/- 0.08 for M6G plus PSC833). Antinociceptive effects of M6G were significantly enhanced by inhibition of P-gp. Inhibition of P-gp alters the transport of M6G across the blood-brain barrier, resulting in enhanced spinal cord uptake and enhanced antinociception. Topics: Animals; ATP Binding Cassette Transporter, Subfamily B, Member 1; Behavior, Animal; Blotting, Western; Central Nervous System; Cyclosporins; Dose-Response Relationship, Drug; Formaldehyde; Infusions, Intravenous; Kidney; Lumbosacral Region; Male; Microdialysis; Morphine Derivatives; Pain; Pain Measurement; Rats; Rats, Sprague-Dawley; Spinal Cord | 2002 |