scutellarein and baicalein

scutellarein has been researched along with baicalein* in 8 studies

Other Studies

8 other study(ies) available for scutellarein and baicalein

ArticleYear
Production of plant-specific flavones baicalein and scutellarein in an engineered E. coli from available phenylalanine and tyrosine.
    Metabolic engineering, 2019, Volume: 52

    Baicalein and scutellarein are bioactive flavones found in the medicinal plant Scutellaria baicalensis Georgi, used in traditional Chinese medicine. Extensive previous work has demonstrated the broad biological activity of these flavonoids, such as antifibrotic, antiviral and anticancer properties. However, their supply from plant material is insufficient to meet demand. Here, to provide an alternative production source and increase production levels of these flavones, we engineered an artificial pathway in an Escherichia coli cell factory for the first time. By first reconstructing the plant flavonoid biosynthetic pathway genes from five different species: phenylalanine ammonia lyase from Rhodotorula toruloides (PAL), 4-coumarate-coenzyme A ligase from Petroselinum crispum (4CL), chalcone synthase from Petunia hybrida (CHS), chalcone isomerase from Medicago sativa (CHI) and an oxidoreductase flavone synthase I from P. crispum (FNSI), production of the intermediates chrysin and apigenin was achieved by feeding phenylalanine and tyrosine as precursors. By comparative analysis of various versions of P450s, a construction expressing 2B1 incorporated with a 22-aa N-terminal truncated flavone C-6 hydroxylase from S. baicalensis (F6H) and partner P450 reductase from Arabidopsis thaliana (AtCPR) was found most effective for production of both baicalein (8.5 mg/L) and scutellarein (47.1 mg/L) upon supplementation with 0.5 g/L phenylalanine and tyrosine in 48 h of fermentation. Finally, optimization of malonyl-CoA availability further increased the production of baicalein to 23.6 mg/L and scutellarein to 106.5 mg/L in a flask culture. This report presents a significant advancement of flavone synthetic production and provides foundation for production of other flavones in microbial hosts.

    Topics: Apigenin; Biosynthetic Pathways; Escherichia coli; Flavanones; Flavonoids; Malonyl Coenzyme A; Metabolic Engineering; Phenylalanine; Plants; Scutellaria baicalensis; Tyrosine

2019
A metabolomic approach to identify anti-hepatocarcinogenic compounds from plants used traditionally in the treatment of liver diseases.
    Fitoterapia, 2018, Volume: 127

    Topics: Andrographis; Antineoplastic Agents, Phytogenic; Apigenin; Apocynaceae; Asia, Southeastern; Biflavonoids; Bignoniaceae; Catechin; Diterpenes; Ethnopharmacology; Flavanones; Flavonoids; Hep G2 Cells; Humans; Lamiaceae; Liver Neoplasms; Metabolomics; Plants, Medicinal; Proanthocyanidins

2018
Enzymatic production of oroxylin A and hispidulin using a liverwort flavone 6-O-methyltransferase.
    FEBS letters, 2016, Volume: 590, Issue:16

    Oroxylin A and hispidulin, compounds which are abundant in both Scutellaria and liverwort species, are important lead compounds for the treatment of ischemic cerebrovascular disease. Their enzymatic synthesis requires an O-methyltransferase able to interact with the related flavonoid's 6-OH group, but such an enzyme has yet to be identified in plants. Here, the gene encoding an O-methyltransferase (designated PaF6OMT) was isolated from the liverwort species Plagiochasma appendiculatum. A test of alternative substrates revealed that its strongest preferences were baicalein and scutellarein, which were converted into, respectively, oroxylin A and hispidulin. Allowed a sufficient reaction time, the conversion rate of these two substrates was, respectively, 90% and 100%. PaF6OMT offers an enzymatic route to the synthesis of oroxylin A and hispidulin.

    Topics: Apigenin; Cerebrovascular Disorders; Cloning, Molecular; Flavanones; Flavones; Flavonoids; Hepatophyta; Humans; Methyltransferases; Substrate Specificity

2016
Effects of Hydroxy Groups in the A-Ring on the Anti-proteasome Activity of Flavone.
    Biological & pharmaceutical bulletin, 2015, Volume: 38, Issue:6

    The ubiquitin-proteasome pathway plays an important role in regulating apoptosis and the cell cycle. Recently, proteasome inhibitors have been shown to have antitumor effects and have been used in anticancer therapy for several cancers such as multiple myeloma. Although some flavones, such as apigenin, chrysin and luteolin, have a specific role in the inhibition of proteasome activity and induced apoptosis in some reports, these findings did not address all flavone types. To further investigate the proteasome-inhibitory mechanism of flavonoids, we examined the inhibitory activity of 5,6,7-trihydroxyflavone, baicalein and 5,6,7,4'-tetrahydroxyflavone, scutellarein on extracted proteasomes from mice and cancer cells. Unlike the other flavones, baicalein and scutellarein did not inhibit proteasome activity or accumulate levels of ubiquitinated proteins. These results indicate that flavones with hydroxy groups at positions 5, 6 and 7 of the A-ring lack the anti-proteasome function.

    Topics: Animals; Antineoplastic Agents; Antineoplastic Agents, Phytogenic; Apigenin; Apoptosis; Flavanones; Flavones; HCT116 Cells; Humans; Jurkat Cells; Molecular Structure; Neoplasms; Phytotherapy; Plant Extracts; Proteasome Endopeptidase Complex; Proteasome Inhibitors; Rabbits; Structure-Activity Relationship

2015
Identification of flavone glucuronide isomers by metal complexation and tandem mass spectrometry: regioselectivity of uridine 5'-diphosphate-glucuronosyltransferase isozymes in the biotransformation of flavones.
    Journal of agricultural and food chemistry, 2013, Feb-20, Volume: 61, Issue:7

    Flavone glucuronide isomers of five flavones (chrysin, apigenin, luteolin, baicalein, and scutellarein) were differentiated by collision-induced dissociation of [Co(II) (flavone-H) (4,7-diphenyl-1,10-phenanthroline)(2)](+) complexes. The complexes were generated via postcolumn addition of a metal-ligand solution after separation of the glucuronide products generated upon incubation of each flavone with an array of uridine 5'-diphosphate (UDP)-glucuronosyltransferase (UGT) isozymes. Elucidation of the glucuronide isomers allowed a systematic investigation of the regioselectivity of 12 human UGT isozymes, including 8 UGT1A and 4 UGT2B isozymes. Glucuronidation of the 7-OH position was the preferred site for all the flavones except for luteolin, which possessed adjacent hydroxyl groups on the B ring. For all flavones and UGT isozymes, glucuronidation of the 5-OH position was never observed. As confirmed by the metal complexation/MS/MS strategy, glucuronidation of the 6-OH position only occurred for baicalein and scutellarein when incubated with three of the UGT isozymes.

    Topics: Apigenin; Biotransformation; Chromatography, High Pressure Liquid; Coordination Complexes; Flavanones; Flavonoids; Glucuronides; Glucuronosyltransferase; Isoenzymes; Isomerism; Luteolin; Tandem Mass Spectrometry

2013
Inhibition and disaggregation of α-synuclein oligomers by natural polyphenolic compounds.
    FEBS letters, 2011, Apr-20, Volume: 585, Issue:8

    Aggregation of alpha-synuclein (αS) into oligomers is critically involved in the pathogenesis of Parkinson's disease (PD). Using confocal single-molecule fluorescence spectroscopy, we have studied the effects of 14 naturally-occurring polyphenolic compounds and black tea extract on αS oligomer formation. We found that a selected group of polyphenols exhibited potent dose-dependent inhibitory activity on αS aggregation. Moreover, they were also capable of robustly disaggregating pre-formed αS oligomers. Based upon structure-activity analysis, we propose that the key molecular scaffold most effective in inhibiting and destabilizing self-assembly by αS requires: (i) aromatic elements for binding to the αS monomer/oligomer and (ii) vicinal hydroxyl groups present on a single phenyl ring. These findings may guide the design of novel therapeutic drugs in PD.

    Topics: Acetylcysteine; alpha-Synuclein; Antioxidants; Apigenin; Ascorbic Acid; Deferoxamine; Dose-Response Relationship, Drug; Flavanones; Flavonoids; Humans; Iron Chelating Agents; Microscopy, Confocal; Microscopy, Fluorescence; Molecular Structure; Mutation; Parkinson Disease; Phenols; Polyphenols; Protein Multimerization; Protein Structure, Quaternary; Recombinant Proteins; Spectrometry, Fluorescence; Structure-Activity Relationship

2011
Inhibitory effect of Erigeron breviscapus extract and its flavonoid components on GABA shunt enzymes.
    Phytomedicine : international journal of phytotherapy and phytopharmacology, 2008, Volume: 15, Issue:1-2

    Gamma-aminobutyric acid (GABA), the major inhibitory neurotransmitter, is metabolized by the successive action of GABA transaminase (GABA-T) and succinic semialdehyde dehydrogenase (SSADH). Inhibition of both enzymes in brain tissues increases the GABA level and may have therapeutic applications in neurological diseases. Erigeron breviscapus ethanol extract was evaluated for their effect on both enzymes. This extract, its ethyl acetate fraction and aqueous fraction, significantly inhibited them at >100 microg/ml. Flavonoid components of E. breviscapus potently and noncompetitively inhibited both enzymes, and the different structure-activity relations were observed with respect to inhibition of both enzymes. Baicalein was the most potent inhibitor for GABA-T with an IC50 value of 12.8+/-1.2 microM, and scutellarein exhibited the best inhibitory effect on SSADH with an IC50 value of 7.20+/-0.9 microM. The present results may imply new pharmacological actions of E. breviscapus and contribute partially to the beneficial effect of the herb and flavonoids on the central nervous system.

    Topics: 4-Aminobutyrate Transaminase; Animals; Apigenin; Brain; Chromatography, High Pressure Liquid; Dose-Response Relationship, Drug; Drug Evaluation, Preclinical; Erigeron; Flavanones; Flavonoids; Male; Molecular Structure; Plant Extracts; Rats; Rats, Sprague-Dawley; Structure-Activity Relationship; Succinate-Semialdehyde Dehydrogenase

2008
Structure-activity relationships of flavonoids, isolated from Scutellaria baicalensis, binding to benzodiazepine site of GABA(A) receptor complex.
    Planta medica, 2002, Volume: 68, Issue:12

    Twenty-six flavonoids were isolated from Scutellaria baicalensis. Their affinities for the benzodiazepine (BDZ) binding site of GABA A receptor have been studied using [ 3H]flunitrazepam binding to rat cortical membranes in vitro. The structure-activity relationships suggested that 2'-OH flavones exhibited the most potent binding affinity, which could lead to the design and discovery of new BDZ receptor ligands.

    Topics: Animals; Apigenin; Binding Sites; Flavanones; Flavonoids; Flunitrazepam; GABA Modulators; Glucuronates; Molecular Structure; Plant Extracts; Quantitative Structure-Activity Relationship; Rats; Rats, Sprague-Dawley; Receptors, GABA-A; Scutellaria baicalensis

2002