schisanhenol has been researched along with schizandrin* in 5 studies
5 other study(ies) available for schisanhenol and schizandrin
Article | Year |
---|---|
[Analysis of lignans and their metabolites derived from Schisandra chinensis and vinegar Schisandra chinensis in rats’ plasma, bile, urine and faeces based on UHPLC-QTOF/MS].
UHPLC-QTOF/MS technique was used to study the differences of lignans and their metabolites derived from Schisandra chinensis and vinegar Schisandra chinensis in rat plasma, bile, urine and faeces by the data processing techniques such as the dynamic background subtract(DBS), mass defect filtering(MDF) and enhance peak list (EPL) in analysis. In order to enhance accuracy for Schisandra chinensis hepatoprotective effect, we established rat acute alcoholic liver injury model in this experiment, and studied the prototype components and metabolisms of Schisandra lignans in vivo under pathological condition. The main ingredients of alcohol extract are lignans, including deoxyschizandrin, schisandrin B, schizandrin C, schizandrol, schizandrol B,schisantherin, schisantherin B, schisanhenol, gomisin G, gomisin J. The metabolic transformation of lignans in rats was mainly induced by methylation, hydroxyl, oxidation, and so on. Finally, we identified 6 kinds of prototype components and their 20 potential metabolites in Schisandra chinensis group and vinegar Schisandra chinensis group. Topics: Acetic Acid; Animals; Bile; Chromatography, High Pressure Liquid; Cyclooctanes; Dioxoles; Drugs, Chinese Herbal; Feces; Lignans; Liver Diseases, Alcoholic; Plasma; Polycyclic Compounds; Rats; Schisandra; Urine | 2016 |
Inhibition of UDP-Glucuronosyltransferases (UGTs) Activity by constituents of Schisandra chinensis.
Structure-activity relationship for the inhibition of Schisandra chinensis's ingredients toward (Uridine-Diphosphate) UDP-glucuronosyltransferases (UGTs) activity was performed in the present study. In vitro incubation system was employed to screen the inhibition capability of S. chinensis's ingredients, and in silico molecular docking method was carried out to explain possible mechanisms. At 100 μM of compounds, the activity of UGTs was inhibited by less than 90% by schisandrol A, schisandrol B, schisandrin, schisandrin C, schisantherin A, gomisin D, and gomisin G. Schisandrin A exerted strong inhibition toward UGT1A1 and UGT1A3, with the residual activity to be 7.9% and 0% of control activity. Schisanhenol exhibited strong inhibition toward UGT2B7, with the residual activity to be 7.9% of control activity. Gomisin J of 100 μM inhibited 91.8% and 93.1% of activity of UGT1A1 and UGT1A9, respectively. Molecular docking prediction indicated different hydrogen bonds interaction resulted in the different inhibition potential induced by subtle structure alteration among schisandrin A, schisandrin, and schisandrin C toward UGT1A1 and UGT1A3: schisandrin A > schisandrin > schisandrin C. The detailed inhibition kinetic evaluation showed the strong inhibition of gomisin J toward UGT1A9 with the inhibition kinetic parameter (Ki ) to be 0.7 μM. Based on the concentrations of gomisin J in the plasma of the rats given with S. chinensis, high herb-drug interaction existed between S. chinensis and drugs mainly undergoing UGT1A9-mediated metabolism. In conclusion, in silico-in vitro method was used to give the inhibition information and possible inhibition mechanism for S. chinensis's components toward UGTs, which guide the clinical application of S. chinensis. Topics: Animals; Cyclooctanes; Dioxoles; Drugs, Chinese Herbal; Glucuronosyltransferase; Herb-Drug Interactions; Lignans; Plant Extracts; Polycyclic Compounds; Rats; Schisandra; Structure-Activity Relationship | 2015 |
Simultaneous and rapid determination of main lignans in different parts of Schisandra sphenanthera by micellar electrokinetic capillary chromatography.
Lignans are imporant active ingredients of Schisandra sphenanthera. A micellar electrokinetic chromatography method was developed for the simultaneous determination of eight lignans--schizandrin, schisandrol B, schisantherin A, schisanhenol, anwulignan, deoxyschizandrin, schizandrin B and schizandrin C--in different parts of S. sphenanthera. The key factors for separation and determination were studied and the best analysis conditions were obtained using a background electrolyte of 10 mM phosphate-37.5 mM SDS-35% v/v acetonitrile (pH 8.0) at the separation voltage of 28 kV and detection at 214 nm, whereby the plant samples could be analyzed within 9.0 min. Analysis yielded good reproducibility (RSD between 1.19-2.28%) and good recovery (between 92.2-103.8%). The detection limits (LOD) and limit of quantification (LOQ) were within 0.4-1.2 mg/L and 1.5-4.0 mg/L. This method is promising to improve the quality control of different parts of S. sphenanthera. Topics: Chromatography, Micellar Electrokinetic Capillary; Cyclooctanes; Dioxoles; Lignans; Polycyclic Compounds | 2011 |
A simple and sensitive HPLC method for the simultaneous determination of eight bioactive components and fingerprint analysis of Schisandra sphenanthera.
A simple and sensitive high performance liquid chromatography method with photodiode array detection (HPLC-DAD) was developed for simultaneous determination of eight bioactive constituents (schisandrin, schisandrol B, schisantherin A, schisanhenol, anwulignan, deoxyshisandrin, schisandrin B and schisandrin C) in the ripe fruit of Schisandra sphenanthera and its traditional Chinese herbal preparations Wuzhi-capsule by optimizing the extraction, separation and analytical conditions of HPLC-DAD. The chemical fingerprint of S. sphenanthera was established using raw materials of 15 different origins in China. The chromatographic separations were obtained by an Agilent Eclipse XDB-C18 reserved-phase column (250 mm x 4.6 mm i.d., 5 microm) using gradient elution with water-formic acid (100:0.1, v/v) and acetonitrile, at a flow rate of 1.0 mL min(-1), an operating temperature of 35 degrees C, and a wavelength of 230 nm. The constituents were confirmed by (+) electrospray ionization LC-MS. The new method was validated and was successfully applied to simultaneous determination of components in 13 batches of Wuzhi-capsule. The results indicate that this multi-component determination method in combination with chromatographic fingerprint analysis is suitable for quantitative analysis and quality control of S. sphenanthera. Topics: Chromatography, High Pressure Liquid; Cyclooctanes; Dioxoles; Fruit; Lignans; Mass Spectrometry; Plant Extracts; Polycyclic Compounds; Reproducibility of Results; Schisandra | 2010 |
[Induction of hepatic microsomal monooxygenases by schisanhenol in rats].
Topics: Animals; Cyclooctanes; Cytochrome P-450 Enzyme System; Enzyme Induction; Lignans; Male; Mice; Microsomes, Liver; Oxygenases; Polycyclic Compounds; Rats; Rats, Inbred Strains | 1985 |