sc-236 has been researched along with sulindac-sulfone* in 2 studies
2 other study(ies) available for sc-236 and sulindac-sulfone
Article | Year |
---|---|
Nonsteroidal anti-inflammatory drugs induce colorectal cancer cell apoptosis by suppressing 14-3-3epsilon.
To determine the role of 14-3-3 in colorectal cancer apoptosis induced by nonsteroidal anti-inflammatory drugs (NSAIDs), we evaluated the effects of sulindac on 14-3-3epsilon protein expression in colorectal cancer cells. Sulindac sulfide inhibited 14-3-3epsilon proteins in HT-29 and DLD-1 cells in a time- and concentration-dependent manner. Sulindac sulfone at 600 mumol/L inhibited 14-3-3epsilon protein expression in HT-29. Indomethacin and SC-236, a selective cyclooxygenase-2 (COX-2) inhibitor, exerted a similar effect as sulindac. Sulindac suppressed 14-3-3epsilon promoter activity. As 14-3-3epsilon promoter activation is mediated by peroxisome proliferator-activated receptor delta (PPARdelta), we determined the correlation between 14-3-3epsilon inhibition and PPARdelta suppression by NSAIDs. Sulindac sulfide inhibited PPARdelta protein expression and PPARdelta transcriptional activity. Overexpression of PPARdelta by adenoviral transfer rescued 14-3-3epsilon proteins from elimination by sulindac or indomethacin. NSAID-induced 14-3-3epsilon suppression was associated with reduced cytosolic Bad with elevation of mitochondrial Bad and increase in apoptosis which was rescued by Ad-PPARdelta transduction. Stable expression of 14-3-3epsilon in HT-29 significantly protected cells from apoptosis. Our findings shed light on a novel mechanism by which NSAIDs induce colorectal cancer apoptosis via the PPARdelta/14-3-3epsilon transcriptional pathway. These results suggest that 14-3-3epsilon is a target for the prevention and therapy of colorectal cancer. Topics: 14-3-3 Proteins; Adenoviridae; Anti-Inflammatory Agents, Non-Steroidal; Apoptosis; bcl-Associated Death Protein; Colorectal Neoplasms; Cyclooxygenase 2 Inhibitors; HT29 Cells; Humans; Indomethacin; Mitochondria; PPAR delta; Promoter Regions, Genetic; Pyrazoles; Sulfonamides; Sulindac | 2007 |
Cox-2 is needed but not sufficient for apoptosis induced by Cox-2 selective inhibitors in colon cancer cells.
The role of Cox-2 in NSAID-induced apoptosis is debated. We studied the role of Cox-2 inhibition in apoptosis induced by a selective Cox-2 inhibitor, SC236 (a structural analogue of celecoxib) in two colon cancer cell lines, HT29 (expressing Cox-2 protein) and HCT116 (not expressing Cox-2 protein). Apoptosis was quantified by flow cytometry. SC236 0-75 microM decreased cell numbers and induced apoptosis to identical levels in HT29 and HCT116 cells. However, SC236, concentrations >75 microM reduced Cox-2 protein expression in HT29 cells and induced greater levels of apoptosis in HT29 than in HCT116 cells. In contrast, sulindac sulfide (SSD) (which inhibits Cox-1 and Cox-2) 0-200 microM or sulindac sulfone (SSN) 0-500 microM (without significant activity against Cox-1 or Cox-2) caused identical decreases in cell number and increases in apoptosis in HT29 and HCT116 cells. Neither SSD nor SSN altered the expression of Cox-2 in HT29 cells. To determine that the higher levels of apoptosis in HT29 cells with SC236 >75 microM were related to decreased Cox-2 protein levels, we decreased Cox-2 protein expression in HT29 cells with curcumin (diferuloylmethane) and studied its effect on SC236-induced apoptosis. Curcumin augmented apoptosis induced by SC236 in HT29 cells but not in Cox-2 lacking HCT116 cells. In conclusion, selective Cox-2 inhibitors can induce apoptosis independent of Cox-2 expression. However they may selectively target cells that express Cox-2 by decreasing their Cox-2 protein expression. Topics: Antineoplastic Agents; Apoptosis; Colonic Neoplasms; Curcumin; Cyclooxygenase 2; Isoenzymes; Prostaglandin-Endoperoxide Synthases; Pyrazoles; Sulfonamides; Sulindac | 2003 |