sb-705498 has been researched along with capsazepine* in 2 studies
2 other study(ies) available for sb-705498 and capsazepine
Article | Year |
---|---|
Do TRPV1 antagonists increase the risk for skin tumourigenesis? A collaborative in vitro and in vivo assessment.
A recent hypothesis suggesting that the pharmacological target TRPV1 (transient receptor potential vanilloid subfamily, member 1) may function as a tumour suppressor, which potentially impacts the development of TRPV1 antagonist therapeutics for a range of conditions. However, little is known about the long-term physiologic effects of TRPV1 blockade in the skin. In vitro and in vivo studies suggested that the potent TRPV1 competitive antagonist AMG-9810 promoted proliferation in N/TERT1 cells (telomerase-immortalised primary human keratinocytes 1) and tumour development in mouse skin that was mediated through EGFR/Akt/mTOR signalling. We attempted to reproduce the reported in vitro and in vivo findings to further explore this hypothesis to understand the underlying mechanism and the risk associated with TRPV1 antagonism in the skin. In vitro proliferation studies using multiple methods and topical application with AMG-9810 and structurally similar TRPV1 antagonists such as SB-705498 and PAC-14028 were performed. Although we confirmed expression of TRPV1 in primary human epidermal keratinocytes (HEKn) and spontaneously immortalised human keratinocytes (HaCaT), we were unable to demonstrate cell proliferation in either cell type or any clear evidence of increased expression of proteins in the EGFR/Akt/mTOR signalling pathway with these molecules. We were also unable to demonstrate skin tumour promotion or underlying molecular mechanisms involved in the EGFR/Akt/mTOR signalling pathway in a single-dose and two-stage carcinogenesis mouse study treated with TRPV1 antagonists. In conclusion, our data suggest that inhibiting the pharmacological function of TRPV1 in skin by specific antagonists has not been considered to be indicative of skin tumour development. Topics: Acrylamides; Animals; Anthracenes; Bridged Bicyclo Compounds, Heterocyclic; Capsaicin; Cell Line; Cell Proliferation; Cell Survival; Cocarcinogenesis; Female; Humans; Keratinocytes; Mice; Mice, Hairless; Piperidines; Primary Cell Culture; Pyridines; Pyrrolidines; Risk; Skin Neoplasms; TRPV Cation Channels; Urea | 2018 |
Essential role for TRPV1 in stress-induced (mast cell-dependent) colonic hypersensitivity in maternally separated rats.
Irritable bowel syndrome is in part characterized by an increased sensitivity to colonic distension. Stress is an important trigger factor for symptom generation. We hypothesized that stress induces visceral hypersensitivity via mast cell degranulation and transient receptor ion channel 1 (TRPV1) modulation. We used the rat model of neonatal maternal separation (MS) to investigate this hypothesis. The visceromotor response to colonic distention was assessed in adult MS and non-handled (NH) rats before and after acute water avoidance (WA) stress. We evaluated the effect of the mast cell stabilizer doxantrazole, neutralizing antiserum against the mast cell mediator nerve growth factor (NGF) and two different TRPV1 antagonists; capsazepine (non-specific) and SB-705498 (TRPV1-specific). Immunohistochemistry was used to assess post-WA TRPV1 expression in dorsal root ganglia and the presence of immunocytes in proximal and distal colon. Retrograde labelled and microdissected dorsal root ganglia sensory neurons were used to evaluate TRPV1 gene transcription. Results showed that acute stress induces colonic hypersensitivity in MS but not in NH rats. Hypersensitivity was prevented by prestress administration of doxantrazole and anti-NGF. Capsazepine inhibited and SB-705498 reversed poststress hypersensitivity. In MS rats, acute stress induced a slight increase in colonic mast cell numbers without further signs of inflammation. Post-WA TRPV1 transcription and expression was not higher in MS than NH rats. In conclusion, the present data on stress-induced visceral hypersensitivity confirm earlier reports on the essential role of mast cells and NGF. Moreover, the results also suggest that TRPV1 modulation (in the absence of overt inflammation) is involved in this response. Thus, mast cells and TRPV1 are potential targets to treat stress-induced visceral hypersensitivity. Topics: Animals; Blotting, Western; Capsaicin; Catheterization; Colon; Drinking Behavior; Female; Immunohistochemistry; Macrophages; Mast Cells; Maternal Deprivation; Nerve Growth Factor; Pregnancy; Pyrrolidines; Rats; Rats, Long-Evans; Stress, Psychological; T-Lymphocytes; Transcription, Genetic; TRPV Cation Channels; Urea | 2009 |