sb-415286 has been researched along with 4-benzyl-2-methyl-1-2-4-thiadiazolidine-3-5-dione* in 4 studies
4 other study(ies) available for sb-415286 and 4-benzyl-2-methyl-1-2-4-thiadiazolidine-3-5-dione
Article | Year |
---|---|
Glycogen synthase kinase-3β is involved in C-reactive protein-induced endothelial cell activation.
C-reactive protein (CRP) is a significant contributor to atherosclerosis and a powerful predictor of cardiovascular risk. The role of CRP in endothelial cell (EC) activation has been extensively investigated, but the underlying mechanisms have not been fully elucidated. The effect of glycogen synthase kinase-3β (GSK-3β) on CRP-induced EC activation was evaluated in this study. We observed that CRP decreased endothelial nitric oxide synthase (eNOS) activity during EC activation. CRP also activated GSK-3β by dephosphorylating its Ser9 level and reducing β-catenin protein expression in a time-dependent manner. We also found that the GSK-3β inhibitors TDZD-8 and SB415286 partially restored eNOS activity and suppressed the release of intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 from ECs. These data provide new evidence for the involvement of GSK-3β in EC activation. Topics: Aminophenols; C-Reactive Protein; Endothelial Cells; Endothelium, Vascular; Glycogen Synthase Kinase 3; Humans; Intercellular Adhesion Molecule-1; Maleimides; Nitric Oxide Synthase Type III; Phosphorylation; Thiadiazoles; Vascular Cell Adhesion Molecule-1 | 2013 |
Inhibiting glycogen synthase kinase 3beta in sepsis.
The serine-threonine protein kinase glycogen synthase kinase (GSK)-3 is involved in the regulation of many cell functions, but its role in the regulation of the inflammatory response is unknown. Here we investigate the effects of GSK-3beta inhibition on organ injury/dysfunction caused by endotoxaemia or severe inflammation in the rat. Rats received either intravenous Escherichia coli lipopolysaccharide (LPS) (6 mg/kg) or LPS (1mg/kg) plus Staphylococcus aureus peptidoglycan (PepG) (0.3mg/kg) or their vehicle (saline). The GSK-3p1 inhibitors TDZD-8, SB415286 (both 1mg/kg, i.v.), and SB216763 (0.6 mg/kg i.v.), or vehicle (10% dimethyl sulfoxide) were administered 30 min before LPS or LPS/PepG. Both endotoxaemia and co-administration of LPS/PepG resulted in multiple organ injury and dysfunction. The GSK-3beta inhibitors attenuated the organ injury/dysfunction caused by LPS or LPS/PepG. GSK-3beta inhibition reduced the Ser536 phosphorylation of nuclear factor (NF)-kappaB subunit p65 and the mRNA expression of NF-kappaB-dependent pro-inflammatory mediators, but had no effect on the NF-kappaB/DNA binding activity in the lung. GSK-3beta inhibition reduced the increase in NF-kappaB p65 activity caused by interleukin (IL)1 in human e mbryonic kidney cells in vitro. We propose that GSK-3beta inhibition may be useful in the therapy of sepsis, shock and other diseases associated with local or systemic inflammation. Topics: Alanine Transaminase; Aminophenols; Animals; Aspartate Aminotransferases; Blotting, Western; Cells, Cultured; Creatinine; Endotoxemia; Enzyme Inhibitors; Glycogen Synthase Kinase 3; Glycogen Synthase Kinase 3 beta; Humans; Indoles; Interleukin-1beta; Kidney; Lipopolysaccharides; Male; Maleimides; Peptidoglycan; Phosphorylation; Rats; Rats, Wistar; Sepsis; Thiadiazoles; Transcription Factor RelA | 2007 |
Reduction of experimental colitis in the rat by inhibitors of glycogen synthase kinase-3beta.
The effects of the inhibitors of glycogen synthase kinase-3beta (GSK-3beta), TDZD-8 and SB 415286, which can substantially reduce the systemic inflammation associated with endotoxic shock in vivo, have now been investigated on the acute colitis provoked by trinitrobenzene sulphonic acid (TNBS) in the rat. Administration of the GSK-3beta inhibitor TDZD-8 (0.1, 0.33 or 1.0 mg kg-1, s.c., b.i.d., for 3 days) caused a dose-dependent reduction in the colonic inflammation induced by intracolonic TNBS assessed after 3 days, both as the area of macroscopic involvement and as a score using 0-10 scale. Likewise, following administration of the GSK-3beta inhibitor SB 415286 (0.1, 0.33 or 1.0 mg kg-1, s.c., b.i.d., for 3 days), the extent and degree of the TNBS-provoked colonic inflammation was reduced. Administration of either TDZD-8 or SB 415286 reduced the fall in body weight following challenge with TNBS at each dose level studied. The increase in myeloperoxidase activity, an index of neutrophil infiltration into the TNBS-induced inflamed colon, was significantly inhibited by both TDZD-8 and SB 415286 at each dose level. The increase in the levels of the proinflammatory cytokine, TNF-alpha, in the inflamed colon was also significantly inhibited by either compound at the highest doses evaluated. The elevated levels of the transcription factor NF-kappaB subunit p65, as determined by Western blot in the nuclear extracts from the TNBS-provoked inflamed colonic tissue, were dose-dependently reduced by TDZD-8 or SB 415286 treatment. These findings demonstrate that two chemically distinct selective inhibitors of the activity of GSK-3beta reduce the inflammation and tissue injury in a rat model of acute colitis. The mechanisms underlying this anti-inflammatory action may be related to downregulation of NF-kappaB activity, involved in the generation of proinflammatory mediators. Topics: Aminophenols; Animals; Body Weight; Colitis; Colon; Dose-Response Relationship, Drug; Enzyme Inhibitors; Glycogen Synthase Kinase 3; Glycogen Synthase Kinase 3 beta; Male; Maleimides; Organ Size; Peroxidase; Rats; Rats, Wistar; Thiadiazoles; Transcription Factor RelA; Tumor Necrosis Factor-alpha | 2006 |
GSK-3beta inhibitors attenuate the organ injury/dysfunction caused by endotoxemia in the rat.
Serine-threonine protein kinase glycogen synthase kinase (GSK)-3 is involved in regulation of many cell functions, but its role in regulation of inflammatory response is unknown. Here we investigate the effects of GSK-3beta inhibition on organ injury/dysfunction caused by lipopolysaccharide or coadministration of lipopolysaccharide and peptidoglycan in the rat.. Prospective, randomized study.. University-based research laboratory.. Ninety-nine anesthetized male Wistar rats.. Study 1: Rats received either intravenous Escherichia coli lipopolysaccharide (6 mg/kg) or vehicle (1 mL/kg; saline). Study 2: Rats received either intravenous E. coli lipopolysaccharide (1 mg/kg) and Staphylococcus aureus peptidoglycan (0.3 mg/kg) or vehicle. The potent and selective GSK-3beta inhibitors TDZD-8 (1 mg/kg intravenously), SB216763 (0.6 mg/kg intravenously), and SB415286 (1 mg/kg intravenously) or vehicle (10% dimethyl sulfoxide) was administered 30 mins before lipopolysaccharide or lipopolysaccharide and peptidoglycan.. Endotoxemia resulted in increases in the serum levels of creatinine (indicator of renal dysfunction), aspartate aminotransferase, alanine aminotransferase (markers for hepatocellular injury), lipase (indicator of pancreatic injury), and creatine kinase (indicator of neuromuscular injury). Coadministration of lipopolysaccharide and peptidoglycan resulted in hepatocellular injury and renal dysfunction. All GSK-3beta inhibitors attenuated the organ injury/dysfunction caused by lipopolysaccharide or lipopolysaccharide and peptidoglycan. GSK-3beta inhibition reduced the Ser536 phosphorylation of nuclear factor-kappaB subunit p65 and the messenger RNA expression of nuclear factor-kappaB-dependent proinflammatory mediators but had no effect on the nuclear factor-kappaB/DNA binding activity in the lung. GSK-3beta inhibition reduced the increase in nuclear factor-kappaB p65 activity caused by interleukin-1 in human embryonic kidney cells in vitro.. The potent and selective GSK-3beta inhibitors TDZD-8, SB216763, and SB415286 reduced the organ injury/dysfunction caused by lipopolysaccharide or lipopolysaccharide and peptidoglycan in the rat. We propose that GSK-3beta inhibition may be useful in the therapy of the organ injury/dysfunction associated with sepsis, shock, and other diseases associated with local or systemic inflammation. Topics: Alanine Transaminase; Aminophenols; Animals; Aspartate Aminotransferases; Blotting, Western; Cells, Cultured; Creatine Kinase; Creatinine; Endotoxemia; Glycogen Synthase Kinase 3; Glycogen Synthase Kinase 3 beta; Indoles; Kidney Diseases; Lipase; Lipopolysaccharides; Liver; Male; Maleimides; NF-kappa B; Peptidoglycan; Phosphorylation; Polysaccharides, Bacterial; Prospective Studies; Random Allocation; Rats; Rats, Wistar; Reverse Transcriptase Polymerase Chain Reaction; Thiadiazoles | 2005 |