sauvagine and antalarmin

sauvagine has been researched along with antalarmin* in 7 studies

Other Studies

7 other study(ies) available for sauvagine and antalarmin

ArticleYear
Effects of corticotropin-releasing hormone receptor antagonists on the ethanol-induced increase of dynorphin A1-8 release in the rat central amygdala.
    Alcohol (Fayetteville, N.Y.), 2011, Volume: 45, Issue:7

    Neurons in the central amygdala (CeA) co-express dynorphin and corticotropin-releasing hormone (CRH). Moreover, the activity of both the CRH and dynorphin systems in CeA is altered by alcohol treatments, effects suggesting interactions between the CRH and dynorphin systems. Thus, the objectives of the present study were to investigate the effects of (1) activating CRH receptors (CRHRs) by microinjection of CRH in CeA and (2) blocking CRHRs by local microinjections of CRHR antagonists in the CeA on the alcohol-induced changes in the extracellular concentrations of dynorphin A1-8 with in vivo microdialysis experiments. Microdialysis probes with a microinjection port were implanted in the CeA of alcohol-naïve Sprague-Dawley rats. Microinjections of CRH or antalarmin, a CRH receptor type 1 (CRHR1) antagonist, or anti-sauvagine-30, a CRH receptor type 2 (CRHR2) antagonist, at the level of CeA were followed by an intraperitoneal injection of either saline or 2.8 g ethanol/kg body weight. The content of dynorphin A1-8 was determined in dialyzate samples obtained prior to and following the various treatments using a specific radioimmunoassay. Activation of CRHRs in CeA induced an increase in the extracellular concentrations of dynorphin A1-8. Moreover, acute alcohol administration increased the extracellular concentrations of dynorphin A1-8 in CeA, an effect that was attenuated by blocking CRHR2 with anti-sauvagine-30 microinjection but not blocking CRHR1 with antalarmin microinjection. Therefore, the findings suggest an interaction between the CRH and dynorphin A1-8 systems at the level of CeA in response to acute alcohol exposure.

    Topics: Amphibian Proteins; Amygdala; Animals; Corticotropin-Releasing Hormone; Dynorphins; Ethanol; Male; Microdialysis; Microinjections; Peptide Fragments; Peptide Hormones; Pyrimidines; Pyrroles; Rats; Rats, Sprague-Dawley; Receptors, Corticotropin-Releasing Hormone

2011
Exploring the binding site crevice of a family B G protein-coupled receptor, the type 1 corticotropin releasing factor receptor.
    Molecular pharmacology, 2010, Volume: 78, Issue:4

    Family B of G protein-coupled receptors (GPCRs) is composed of receptors that bind peptides, such as secretin, glucagon, parathyroid hormone, and corticotropin releasing factor (CRF), which play critical physiological roles. These receptors, like all GPCRs, share a common structural motif of seven membrane-spanning segments, which have been proposed to bind small ligands, such as antalarmin, a nonpeptide antagonist of the type 1 receptor for CRF (CRF(1)). This leads to the hypothesis that as for family A GPCRs, the binding sites of small ligands for family B GPCRs are on the surface of a water-accessible crevice, the binding-site crevice, which is formed by the membrane-spanning segments and extends from the extracellular surface of the receptor into the plane of the membrane. To test this hypothesis we have begun to obtain structural information about family B GPCRs, using as a prototype the CRF(1), by determining the ability of sulfhydryl-specific methanethiosulfonate derivatives, such as the methanethiosulfonate-ethylammonium (MTSEA), to react with CRF(1) and thus irreversibly inhibit (125)I-Tyr(0)-sauvagine binding. We found that MTSEA inhibited (125)I-Tyr(0)-sauvagine binding to CRF(1) and that antalarmin protected against this irreversible inhibition. To identify the susceptible cysteine(s), we mutated, one at a time, four endogenous cysteines to serine. Mutation to serine of Cys211, Cys233, or Cys364 decreased the susceptibility of sauvagine binding to irreversible inhibition by MTSEA. Thus, Cys211, Cys233, and Cys364 at the cytoplasmic ends of the third, fourth, and seventh membrane-spanning segments, respectively, are exposed in the binding site crevice of CRF(1).

    Topics: Amphibian Proteins; Binding Sites; Binding, Competitive; Cell Line; Cell Membrane; Ethyl Methanesulfonate; Humans; Ligands; Mutagenesis, Site-Directed; Peptide Hormones; Protein Binding; Pyrimidines; Pyrroles; Receptors, Corticotropin-Releasing Hormone; Receptors, G-Protein-Coupled

2010
Corticotropin-releasing hormone skin signaling is receptor-mediated and is predominant in the sebaceous glands.
    Hormone and metabolic research = Hormon- und Stoffwechselforschung = Hormones et metabolisme, 2007, Volume: 39, Issue:2

    There is increasing evidence that the sebaceous gland expresses receptors for several neuropeptides and is involved in responses to stress. Among them, corticotropin-releasing hormone (CRH) was currently found to be produced also in the skin. In this study, the distribution of CRH, CRH receptors 1 and 2 (CRH-R1 and CRH-R2), and CRH binding protein (CRH-BP) in cultured human (SZ95) sebocytes was further characterized. Moreover, the effects of CRH and CRH-like peptides on proliferation and inflammatory signaling of CRH receptor-expressing SZ95 sebocytes IN VITRO were investigated. Urocortin (Uct), urotensin and sauvagine are recently described members of the family of structurally related CRH-like peptides, whereas Uct shares a 45% homology with CRH. CRH and Uct inhibited SZ95 sebocyte proliferation with CRH also stimulating interleukin-6 (IL-6) and interleukin-8 (IL-8) release from SZ95 sebocytes. However, CRH had no effect on interleukin-1alpha and interleukin-1beta production in these cells. alpha-Helical-CRF, a CRH antagonistic peptide, annulled the CRH effect on SZ95 sebocyte proliferation and interleukin secretion, while the non-peptidic CRH-R1 selective antagonist antalarmin inhibited the increased production of neutral lipids caused by CRH. In conclusion, CRH, and to a lesser extent Uct, may be involved in signaling of stress pathophysiology in the skin. However, further investigations into the downstream effects of CRH and Uct are required to elucidate the mechanism by which these neuropeptides could establish a stress-related pathophysiological condition in the skin.

    Topics: Amphibian Proteins; Carrier Proteins; Cell Proliferation; Cell Survival; Corticotropin-Releasing Hormone; Interleukin-1; Interleukin-6; Interleukin-8; Peptide Hormones; Peptides; Pyrimidines; Pyrroles; Receptors, Corticotropin-Releasing Hormone; Sebaceous Glands; Signal Transduction; Skin; Skin Physiological Phenomena; Urocortins; Urotensins

2007
A centrally acting, anxiolytic angiotensin II AT1 receptor antagonist prevents the isolation stress-induced decrease in cortical CRF1 receptor and benzodiazepine binding.
    Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology, 2006, Volume: 31, Issue:6

    Long-term pretreatment with an angiotensin II AT1 antagonist blocks angiotensin II effects in brain and peripheral organs and abolishes the sympathoadrenal and hypothalamic-pituitary-adrenal responses to isolation stress. We determined whether AT1 receptors were also important for the stress response of higher regulatory centers. We studied angiotensin II and corticotropin-releasing factor (CRF) receptors and benzodiazepine binding sites in brains of Wistar Hannover rats. Animals were pretreated for 13 days with vehicle or a central and peripheral AT1 antagonist (candesartan, 0.5 mg/kg/day) via osmotic minipumps followed by 24 h of isolation in metabolic cages, or kept grouped throughout the study (grouped controls). In another study, we determined the influence of a similar treatment with candesartan on performance in an elevated plus-maze. AT1 receptor blockade prevented the isolation-induced increase in brain AT1 receptors and decrease in AT2 binding in the locus coeruleus. AT1 receptor antagonism also prevented the increase in tyrosine hydroxylase mRNA in the locus coeruleus. Pretreatment with the AT1 receptor antagonist completely prevented the decrease in cortical CRF1 receptor and benzodiazepine binding produced by isolation stress. In addition, pretreatment with candesartan increased the time spent in and the number of entries to open arms of the elevated plus-maze, measure of decreased anxiety. Our results implicate a modulation of upstream neurotransmission processes regulating cortical CRF1 receptors and the GABA(A) complex as molecular mechanisms responsible for the anti-anxiety effect of centrally acting AT1 receptor antagonists. We propose that AT1 receptor antagonists can be considered as compounds with possible therapeutic anti-stress and anti-anxiety properties.

    Topics: Amphibian Proteins; Analysis of Variance; Angiotensin II; Angiotensin II Type 1 Receptor Blockers; Animals; Autoradiography; Behavior, Animal; Benzimidazoles; Benzodiazepines; Biphenyl Compounds; Cerebral Cortex; Disease Models, Animal; Flunitrazepam; GABA Modulators; In Situ Hybridization; Male; Maze Learning; Peptide Hormones; Peptides; Protein Binding; Pyrimidines; Pyrroles; Rats; Receptor, Angiotensin, Type 2; Receptors, Corticotropin-Releasing Hormone; RNA, Messenger; Social Isolation; Stress, Physiological; Tetrazoles; Tyrosine 3-Monooxygenase

2006
Evidence that corticotropin-releasing factor receptor type 1 couples to Gs- and Gi-proteins through different conformations of its J-domain.
    British journal of pharmacology, 2006, Volume: 149, Issue:7

    According to the two-domain model for the corticotropin-releasing factor receptor type 1 (CRF(1)), peptide antagonists bind to the N-terminal domain (N-domain), non-peptide antagonists to the transmembrane region (J-domain), whereas peptide agonists attach to both the N- and J-domain of the receptor to express activity. The aim of this study was to search for possible differences in the antagonism of the Gs- and Gi-protein coupling of CRF(1) by a peptide (alpha-helical CRF(9-41)) and non-peptide antagonist (antalarmin), to determine whether the conformational requirements of the activated CRF(1) states for Gs and Gi coupling are similar or different.. We studied the inhibitory effect of alpha-helical CRF(9-41) and antalarmin on the coupling of CRF(1) to Gs- and Gi-protein in human embryonic kidney cells, using the [(35)S]-GTPgammaS binding stimulation assay.. The non-peptide antagonized the receptor coupling to Gs competitively but that to Gi noncompetitively, and its antagonistic potency was different for urocortin- and sauvagine-evoked G-protein activation. In contrast, the peptide antagonist exhibited uniformly competitive antagonism.. The results allow us to extend the two-domain model of CRF(1) activation by assuming that CRF(1) agonists activate the receptor by binding to at least two ensembles of J-domain configurations which couple to Gs or Gi, that are in turn antagonized by a non-peptide antagonist competitively and allosterically, respectively. It is further concluded that the allosteric mechanism of non-peptide antagonism is not valid for the Gs-mediated physiological activities of CRF(1).

    Topics: Allosteric Regulation; Amphibian Proteins; Binding, Competitive; Cell Line; Corticotropin-Releasing Hormone; Dose-Response Relationship, Drug; GTP-Binding Protein alpha Subunits, Gi-Go; GTP-Binding Protein alpha Subunits, Gs; Guanosine 5'-O-(3-Thiotriphosphate); Hormone Antagonists; Humans; Models, Molecular; Peptide Fragments; Peptide Hormones; Peptides; Protein Conformation; Protein Structure, Tertiary; Pyrimidines; Pyrroles; Receptors, Corticotropin-Releasing Hormone; Signal Transduction; Transfection; Urocortins

2006
Peripheral injection of sauvagine prevents repeated colorectal distension-induced visceral pain in female rats.
    Peptides, 2005, Volume: 26, Issue:7

    We investigated the effects of peripheral injection of sauvagine, a CRF2>CRF1 receptor (corticotropin-releasing factor) agonist compared with CRF, on two sets of tonic colorectal distension (CRDs 30, 40, 50 mmHg, 3-min on/off)-induced visceromotor response (VMR) measured as area under the curve (AUC) of abdominal muscle contraction in conscious female rats. Sauvagine (10 or 20 microg/kg, s.c.) abolished the 226.7+/-64.3% and 90.4+/-38.1% increase in AUC to the 2nd CRD compared with the 1st CRD (performed 30 min before) in female Fisher and Sprague-Dawley (SD) rats, respectively. CRF had no effect while the CRF1 antagonist, antalarmin (20 mg/kg, s.c.), alone or with sauvagine, blocked the enhanced response to the 2nd CRD, performed 60 min after the 1st CRD, and reduced further the AUC by 33.5+/-23.3% and 63.5+/-7.2%, respectively in Fisher rats. These data suggest that peripheral CRF2 receptor activation exerts antinociceptive effects on CRD-induced visceral pain, whereas CRF1 contributes to visceral sensitization.

    Topics: Abdominal Pain; Amphibian Proteins; Animals; Colon; Dilatation, Pathologic; Female; Injections, Subcutaneous; Muscle Contraction; Peptide Hormones; Peptides; Pyrimidines; Pyrroles; Rats; Rats, Sprague-Dawley; Receptors, Corticotropin-Releasing Hormone; Rectum

2005
Ligand affinity for amino-terminal and juxtamembrane domains of the corticotropin releasing factor type I receptor: regulation by G-protein and nonpeptide antagonists.
    Biochemistry, 2004, Apr-06, Volume: 43, Issue:13

    Peptide ligands bind the CRF(1) receptor by a two-domain mechanism: the ligand's carboxyl-terminal portion binds the receptor's extracellular N-terminal domain (N-domain) and the ligand's amino-terminal portion binds the receptor's juxtamembrane domain (J-domain). Little quantitative information is available regarding this mechanism. Specifically, the microaffinity of the two interactions and their contribution to overall ligand affinity are largely undetermined. Here we measured ligand interaction with N- and J-domains expressed independently, the former (residues 1-118) fused to the activin IIB receptor's membrane-spanning alpha-helix (CRF(1)-N) and the latter comprising residues 110-415 (CRF(1)-J). We also investigated the effect of nonpeptide antagonist and G-protein on ligand affinity for N- and J-domains. Peptide agonist affinity for CRF(1)-N was only 1.1-3.5-fold lower than affinity for the whole receptor (CRF(1)-R), suggesting the N-domain predominantly contributes to peptide agonist affinity. Agonist interaction with CRF(1)-J (potency for stimulating cAMP accumulation) was 12000-1500000-fold weaker than with CRF(1)-R, indicating very weak direct agonist interaction with the J-domain. Nonpeptide antagonist affinity for CRF(1)-J and CRF(1)-R was indistinguishable, indicating the compounds bind predominantly the J-domain. Agonist activation of CRF(1)-J was fully blocked by nonpeptide antagonist, suggesting antagonism results from inhibition of agonist-J-domain interaction. G-protein coupling with CRF(1)-R (forming RG) increased peptide agonist affinity 92-1300-fold, likely resulting from enhanced agonist interaction with the J-domain rather than the N-domain. Nonpeptide antagonists, which bind the J-domain, blocked peptide agonist binding to RG, and binding of peptide antagonists, predominantly to the N-domain, was unaffected by R-G coupling. These findings extend the two-domain model quantitatively and are consistent with a simple equilibrium model of the two-domain mechanism: (1) The N-domain binds peptide agonist with moderate-to-high microaffinity, substantially increasing the local concentration of agonist and so allowing weak agonist-J-domain interaction. (2) Agonist-J-domain interaction is allosterically enhanced by receptor-G-protein interaction and inhibited by nonpeptide antagonist.

    Topics: Amphibian Proteins; Aniline Compounds; Animals; Binding, Competitive; Cell Line; Corticotropin-Releasing Hormone; Extracellular Space; GTP-Binding Proteins; Humans; Ligands; Models, Chemical; Peptide Fragments; Peptide Hormones; Peptides; Protein Binding; Protein Structure, Tertiary; Pyrazoles; Pyrimidines; Pyrroles; Rats; Receptors, Corticotropin-Releasing Hormone; Triazines; Urocortins

2004