santonin has been researched along with costunolide* in 2 studies
2 other study(ies) available for santonin and costunolide
Article | Year |
---|---|
Complexation of sesquiterpene lactones with cyclodextrins: synthesis and effects on their activities on parasitic weeds.
Allelochemicals are safer, more selective and more active alternatives than synthetic agrochemicals for weed control. However, the low solubility of these compounds in aqueous media limits their use as agrochemicals. Herein, we propose the application of α-, β- and γ-cyclodextrins to improve the physicochemical properties and biological activities of three sesquiterpene lactones: dehydrocostuslactone, costunolide and (-)-α-santonin. Complexation was achieved by kneading and coprecipitation methods. Aqueous solubility was increased in the range 100-4600% and the solubility-phase diagrams suggested that complex formation had been successful. The results of the PM3 semiempirical calculations were consistent with the experimental results. The activities on etiolated wheat coleoptiles, Standard Target Species and parasitic weeds were improved. Cyclodextrins preserved or enhanced the activity of the three sesquiterpene lactones. Free cyclodextrins did not show significant activity and therefore the enhancement in activity was due to complexation. These results are promising for applications in agrochemical design. Topics: Cyclodextrins; Lactones; Models, Molecular; Plant Weeds; Santonin; Sesquiterpenes; Solubility | 2017 |
Reversal of cocaine-induced planarian behavior by parthenolide and related sesquiterpene lactones.
Here we report the prevention and reversal of cocaine-induced behaviors in planarian worms by parthenolide and two related cyclic sesquiterpene lactones (SL), costunolide and santonin. Using established protocols, we studied two cocaine-induced behavioral effects in planaria; the induction of motility decrease and the induction of C-like hyperkinesia. Cocaine, parthenolide, costunolide, santonin, and a lactone-less cyclic sesquiterpene, beta-eudesmol, decreased planarian motility in a concentration-dependent manner. Only cocaine induced C-like hyperkinesia. At concentrations that did not show any motility decrease, parthenolide, costunolide and santonin, but not beta-eudesmol, significantly reduced the cocaine-induced motility decrease and C-like hyperkinesia, in a concentration-dependent manner. Furthermore, parthenolide, costunolide and santonin were able to rescue planaria from C-like hyperkinesia, after the worms were exposed to cocaine. Conversely, cocaine at a concentration that did not show any measurable effects (10 microM), was able to alleviate the SL-, but not the beta-eudesmol-induced motility decrease. Liquid Chromatography/Mass Spectrometry experiments demonstrated that cocaine does not interact directly with any of the cyclic sesquiterpenoids, which suggests specific biochemical targets for these compounds in planarians. Our data suggests a common binding site for cocaine and the sesquiterpene lactones in planarians. Topics: Algorithms; Animals; Behavior, Animal; Chromatography, High Pressure Liquid; Cocaine; Dopamine Uptake Inhibitors; Dose-Response Relationship, Drug; Hyperkinesis; Mass Spectrometry; Motor Activity; Planarians; Santonin; Sesquiterpenes; Sesquiterpenes, Eudesmane; Spectrometry, Mass, Electrospray Ionization | 2008 |