salvianolic-acid-c has been researched along with tanshinone* in 2 studies
2 other study(ies) available for salvianolic-acid-c and tanshinone
Article | Year |
---|---|
Dual-mixed/CMC model for screening target components from traditional Chinese medicines simultaneously acting on EGFR & FGFR4 receptors.
Radix Salviae Miltiorrhiae (also known as DanShen (DS) in China), a popular herbal drug in traditional Chinese medicine (TCM) for promoting blood circulation and treating blood stasis, has been reported to possess potential anti-tumor effects. The aim of the study was to develop an effective and practical method for screening and identifying bioactive compounds from Radix Salviae Miltiorrhiae. In this work, the epidermal growth factor receptor (EGFR) and fibroblast growth factor receptors 4 (FGFR4) dual-mixed/cell membrane chromatography (CMC) coupled with high performance liquid chromatography-electrospray ionization-ion trap-time of flight-multistage mass spectrum (HPLC-ESI-IT-TOF-MSn) was established and successfully used to identify the active components from Radix Salviae Miltiorrhiae. Salvianolic acid C (SAC), tanshinone I (Tan-I), tanshinone IIA (Tan-IIA), and cryptotanshinone (C-Tan) were identified as bioactive components with EGFR and FGFR4 activities. MTT and kinase assay were performed to investigate inhibitory effects of these compounds against EGFR and FGFR4 cells growth in vitro. Both cell viability and kinase activity showed that cryptotanshinone acting on EGFR receptor and tanshinone IIA acting on FGFR4 receptor. In conclusion, the EGFR & FGFR4 dual-mixed/CMC can simultaneously screen the bioactive components from TCMs that act on both EGFR and FGFR4 receptors, which significantly improve the efficiency of specific bioactive components identification from a complex system. Topics: Abietanes; Alkenes; Cell Proliferation; Chromatography, High Pressure Liquid; Drugs, Chinese Herbal; ErbB Receptors; Gefitinib; HEK293 Cells; Humans; Phenanthrenes; Polyphenols; Protein Kinase Inhibitors; Receptor, Fibroblast Growth Factor, Type 4; Salvia miltiorrhiza; Sorafenib; Spectrometry, Mass, Electrospray Ionization | 2019 |
In vitro inhibitory effects of ethanol extract of Danshen (Salvia miltiorrhiza) and its components on the catalytic activity of soluble epoxide hydrolase.
Soluble epoxide hydrolase (sEH) has been demonstrated to be a key enzyme involved in the pathologic development of several cardiovascular diseases and inflammation, and inhibition of sEH is therefore very helpful or crucial for the treatment of ischemia-reperfusion injury, cardiac hypertrophy, hypertension and inflammation. Danshen, the dried root of Salvia miltiorrhiza (Fam. Labiatae), has been used for the treatment of cardiovascular and cerebrovascular diseases in China and other countries for hundreds of years. Recent studies indicated that Danshen and its preparations also have potential for the management of inflammation. However, little information is available about the possibility of Danshen and its components on sEH inhibition.. Danshen extracts and its constituents were tested for sEH inhibition using its physiological substrate, 8,9-EET, based on a LC-MS/MS assay in this study.. Among the tested 15 compounds, tanshinone IIA and cryptotanshinone were found to be the potent (Ki = 0.87 μM) and medium (Ki = 6.7 μM) mixed-type inhibitors of sEH, respectively. Salvianolic acid C (Ki = 8.6 μM) was proved to be a moderate noncompetitive sEH inhibitor. In consistent with the inhibition results of the pure compounds, the 75% ethanol extract of Danshen (EE, IC50 = 86.5 μg/ml) which contained more tanshinone IIA and cryptotanshinone exhibited more potent inhibition on sEH than the water extract (WE, IC50 > 200 μg/ml) or 1 M NaHCO3 (BE, IC50 > 200 μg/ml) extract.. These data indicated that using the ethanol fraction of Danshen and increasing the amounts of tanshinone IIA, cryptotanshinone and salvianolic acid C, especially the contents of tanshinone IIA in Danshen extract or preparations to enhance the inhibitory effects on sEH might be efficient ways to improve its cardiovascular protective and anti-inflammatory effects, and that herbal medicines could be an untapped reservoir for sEH-inhibition agents and developing sEH inhibitors from the cardiovascular protective and anti-inflammatory herbs is a promising approach. Topics: Abietanes; Alkenes; Drugs, Chinese Herbal; Epoxide Hydrolases; Ethanol; Humans; Phenanthrenes; Plant Extracts; Polyphenols; Salvia miltiorrhiza | 2015 |