salvianolic-acid-B has been researched along with caffeic-acid* in 8 studies
8 other study(ies) available for salvianolic-acid-B and caffeic-acid
Article | Year |
---|---|
[Effect of Rhizophagus intraradices on growth of Salvia miltiorrhiza].
The study aimed to explore the effects of inoculation of Rhizophagus intraradices on the biomass, effective component content, and endogenous hormone content of Salvia miltiorrhiza through pot experiments. The number of leaves, plant height, dry weight of aboveground and underground parts, branch number, root number, root length, root diameter, and other biomass were mea-sured by weighing and counting methods. The content of salvianolic acid B, caffeic acid, rosmarinic acid, tanshinone Ⅰ, tanshinone Ⅱ_A, cryptotanshinone, and other effective components was determined by ultra-high performance liquid chromatography. The content of ABA and GA_3 was determined by triple quadrupole mass spectrometry. The correlations between biomass and effective components and between effective components and plant hormones ABA and GA_3 were analyzed. The results showed that R. intraradices significan-tly increased the aboveground dry weight, leaf number, and root number of S. miltiorrhiza by 0.24-0.65 times, respectively. The content of salvianolic acid B and rosmarinic acid in the aboveground part and the content of salvianolic acid B, caffeic acid, rosmarinic acid, tanshinone Ⅰ, and tanshinone Ⅱ_A in the underground part were significantly increased by 0.44-1.78 times, respectively. R. intraradices infection significantly increased the GA_3/ABA values of aboveground and underground parts by 3.82 and 76.47 times, respectively. The correlation analysis showed that caffeic acid, the effective component of the aboveground part, was significantly positively correlated with plant height, tanshinone Ⅱ_A, the effective component of the underground part, was significantly positively correlated with biomass root number, cryptotanshinone, and dry weight, while rosmarinic acid was significantly negatively correlated with dry weight. There were significant positive correlations between cryptotanshinone and ABA, tanshinone Ⅱ_A and ABA and GA_3, and caffeic acid and GA_3. In conclusion, R. intraradices can promote the accumulation of biomass and secondary metabolites of S. miltiorrhiza and regulate the balance between plant hormones ABA and GA_3, thereby promoting the growth of S. miltiorrhiza. Topics: Plant Growth Regulators; Plant Roots; Rosmarinic Acid; Salvia miltiorrhiza | 2023 |
Increased phenolic acid and tanshinone production and transcriptional responses of biosynthetic genes in hairy root cultures of Salvia przewalskii Maxim. treated with methyl jasmonate and salicylic acid.
The purpose of this study is to reveal the impact of the plant hormone salicylic acid (SA) and methyl jasmonate (MeJA) on the growth, effective components accumulation, and related gene expression of the hairy root of Salvia przewalskii Maxim. Various concentrations of SA (0, 25, 50, 100, 200 μM) or MeJA (0, 50, 100, 200, 400, 600 μM) were added to the culture medium of Salvia przewalskii Maxim. Low concentrations of SA promoted the growth of hairy root, while a high concentration inhibited it. 0 to 400 μM MeJA promoted the growth of hairy root, but 600 μM MeJA starts to inhibit its growth. 50 μM SA and 400 μM MeJA significantly enhanced the production of caffeic acid, rosmarinic acid, salvianolic acid B, cryptotanshinone, and tanshinone IIA. In general, 50 μM SA can be used to accumulate of tanshinone in hairy roots of S. przewalskii with 6 days. 400 μM MeJA can be used to accumulate of phenolic acids in hairy roots of S. przewalskii with 3 days. The selected genes in the tanshinone and phenolic acid biosynthetic pathway were upregulated with elicitation. To obtain a higher yield and content of secondary metabolites, it is advisable to use 50 μM SA or 400 μM MeJA as the optimal doses to cultivate the hairy root of S. przewalskii. This study provides, for the first time, an efficient tanshinone and phenolic acid production method for S. przewalskii. Topics: Abietanes; Acetates; Benzofurans; Caffeic Acids; Cinnamates; Cyclopentanes; Depsides; Dose-Response Relationship, Drug; Gene Expression Regulation, Plant; Hydroxybenzoates; Oxylipins; Phenanthrenes; Plant Growth Regulators; Plant Proteins; Plant Roots; Rosmarinic Acid; Salicylic Acid; Salvia; Time Factors | 2020 |
Screening of blood-activating active components from Danshen-Honghua herbal pair by spectrum-effect relationship analysis.
Danshen (Salvia miltiorrhiza, DS) and Honghua (Carthamus tinctorius, HH) are commonly used traditional Chinese medicines for activating blood and removing stasis, and DS-HH (DH) herbal pair had potential synergistic effects on promoting blood circulation. Therefore, it is essential to make clear the active components of this herbal pair for better understanding their potential synergistic effects.. To comprehensively evaluate the activity of DH herbal pair on physiological coagulation system of rats, and seek their potential active components by spectrum-effect relationship analysis.. The water extracts of DH herbal pair with different proportions (DS: HH = 1:1, 2:1, 3:1, 5:1, 1:5 and 1:3) were prepared. Male Sprague-Dawley rats were randomly divided into eight groups: blank group, model group, model + 1:1 (DH) group, model + 2:1 group, model + 3:1 group, model + 5:1 group, model + 1:5 group and model + 1:3 group. The intragastric administration was performed for eight times with 12 h intervals. SC40 semi-automatic coagulation analyzer was employed to determine coagulation indices. Meanwhile, HPLC and LC-MS were applied for chemical analyses of DH extracts. Finally, the active ingredients were screened by spectrum-effect relationship analysis and the activities of major predicted compounds were validated in vitro.. Different proportions of DH extracts could significantly prolong thrombin time (TT) and activated partial thromboplastin time (APTT), increase prothrombin time (PT) and decrease fibrinogen (FIB) content, reduced whole blood viscosity (WBV) and plasma viscosity (PV), decreased erythrocyte sedimentation rate blood (ESR) compared with model group. Furthermore, fifteen highly related components were screened out by the spectrum-effect relationship and LC-MS analysis, of which caffeic acid, salvianolic acid B, hydroxysafflor yellow A and lithospermate acid had significant blood-activing effect by prolong APTT and decrease FIB content at high (0.6 mM), medium (0.3 mM) and low (0.15 mM) (except lithospermate acid) concentrations in vitro.. DH herbal pair showed strong blood-activating effect on blood stasis rat through regulating the parameters involved in haemorheology and plasma coagulation system. Four active compounds, caffeic acid, salvianolic acid B, hydroxysafflor yellow A and lithospermate acid predicted by spectrum-effect relationship analysis had good blood-activating effect. Therefore, spectrum-effect relationship analysis is an effective approach for seeking active components in herbal pairs. Topics: Animals; Benzofurans; Blood Coagulation; Blood Sedimentation; Caffeic Acids; Carthamus tinctorius; Chalcone; Chromatography, High Pressure Liquid; Drug Evaluation, Preclinical; Drugs, Chinese Herbal; Fibrinogen; Hemorheology; Male; Prothrombin Time; Quinones; Rats, Sprague-Dawley; Salvia miltiorrhiza | 2019 |
Minor compounds of the high purity salvianolic acid B freeze-dried powder from Salvia miltiorrhiza and antibacterial activity assessment.
The study explored the isolation and characterisation of three compounds of high purity salvianolic acid B freeze-dried powder extracted from Salvia miltiorrhiza Bunge. A new salvianolic acid, salvianolic acid V (2) together with two known compounds (3-4) was identified. The antibacterial activity tests showed that compound 2 combined with clinical antibiotics such as Levofloxacin or Colistin sulphate together exhibited potent effects against MRSA or Acinetobacter baumanii. This report has considerably extended our knowledge about the diversity and bioactivity of caffeic acid derivatives from S. miltiorrhiza. Topics: Acinetobacter baumannii; Alkenes; Anti-Bacterial Agents; Benzofurans; Caffeic Acids; Drug Evaluation, Preclinical; Drugs, Chinese Herbal; Freeze Drying; Methicillin-Resistant Staphylococcus aureus; Molecular Structure; Polyphenols; Powders; Salvia miltiorrhiza | 2018 |
[Fingerprint and Simultaneous Determination of Multi-components in Water-soluble Components of Salvia miltiorrhiza in Miao Autonomous County of Songtao, Guizhou].
To establish the HPLC fingerprint of water-soluble components of Salvia miltiorrhiza in Songtao, Guizhou, and to perform simultaneous determination of six components in it, so as to provide analytical method for its quality control.. The analyses were performed on a Phenomenex Luna C18 (2) (250 mm x 4. 6 mm, 5µm) column eluted with 0. 4% formic acid(A) - acetonitrile(B) in a gradient mode. The flow rate was 1. 0 mL/min, column temperature was set at 30 °C.. Eleven common peaks were identified form the HPLC fingerprint of Salvia miltiorrhiza from 10 batches, the HPLC fingerprint similarities of 10 batches were not less than 0. 999. The linear ranges of danshensu, protocatechuic aldehyde, caffeic acid, rosmarinic acid, lithospermic acid and salvianolic acid B were 0. 0680 ~ 1. 3583 mg/mL, 0. 0008 ~ 0. 3967 mg/mL, 0. 0005 ~ 0. 2660 mg/mL, 0. 0020 ~ 0. 3992 mg/mL, 0. 0063 ~ 0. 6311 mg/mL and 0. 0097 ~ 1. 9306 mg/mL with r ≥ 0. 9999, respectively. The recovery rates were 100. 84%,102. 44%, 100. 53% ,100. 63%, 100. 83% and 100. 35% with RSD <2. 3%, respectively.. The established method is simple, accurate and can provide reference for quality control of Salvia miltiorrhiza. Topics: Benzaldehydes; Benzofurans; Caffeic Acids; Catechols; Chromatography, High Pressure Liquid; Cinnamates; Depsides; Drugs, Chinese Herbal; Lactates; Phytochemicals; Quality Control; Rosmarinic Acid; Salvia miltiorrhiza; Water | 2015 |
Investigation of the absorbed and metabolized components of Danshen from Fuzheng Huayu recipe and study on the anti-hepatic fibrosis effects of these components.
Fuzheng Huayu recipe (FZHY) was formulated on the basis of Chinese medicine theory in treating liver fibrosis. It has a significant efficacy against liver fibrosis caused by chronic hepatitis B, with the action mechanisms of inhibition of hepatic stellate cell activation, protection of hepatocyte oxidative injury and regulations of hepatic matrix remodeling etc.. To identify the absorbed components and metabolites of Danshen in FZHY in rat serum, and find their active components for anti-liver fibrosis.. A valid high performance liquid chromatography-electrospray ionization ion trap mass spectrometry (HPLC-ESI/MS(n)) method was established to investigate the absorbed and metabolized compounds of Danshen in FZHY in rat serum after oral administration. Mass spectra were acquired in both negative and positive modes. Otherwise, to evaluate the anti-hepatic fibrosis efficacies of absorbed and metabolized compounds, the LX-2 cell line of hepatic stellate cell (HSC), which was crucial cellular basis of fibrogenesis, was cultured and incubated with absorbed compounds, the cytotoxicity was determined with the cellomics Multiparameter Cytotoxicity Kit 1 by High Content Screening (HCS), the cell proliferation was assayed with EdU-DNA incorporation, and the cell activation was analyzed through α-smooth muscle actin (α-SMA) expression with high content screening technology.. More than 11 compounds and 2 metabolites from Danshen were identified in the serum after oral administration of FZHY by comparing their mass spectra and retention behavior with reference compounds or literature data. Among these compounds, there were no obvious changes in nuclear morphology, membrane permeability with blow 96 μM of six polar compounds treatment in comparison with control cells, respectively. And the salvianolic acid B (6 μM, 48 μM), caffeic acid (6 μM, 48 μM) and rosmarinic acid (48 μM) could obviously inhibit LX-2 cells proliferation, down-regulate α-SMA expression.. The results proved that the established method could be applied to analyze the absorbed into blood compounds of Danshen after oral administration FZHY. These absorbed compounds included 11 compounds and 2 metabolites of Danshen. Among them, the salvianolic acid B, caffeic acid and rosmarinic acid were the effective components of FZHY to anti-hepatic fibrosis effects. Topics: Animals; Benzofurans; Caffeic Acids; Cell Membrane Permeability; Cell Proliferation; Cells, Cultured; Cinnamates; Depsides; Drugs, Chinese Herbal; Humans; Liver Cirrhosis; Male; Phenanthrolines; Rats; Rats, Wistar; Rosmarinic Acid; Salvia miltiorrhiza | 2013 |
Accumulation of salicylic acid-induced phenolic compounds and raised activities of secondary metabolic and antioxidative enzymes in Salvia miltiorrhiza cell culture.
The present work investigated the effects of salicylic acid (SA) on the accumulation of phenolic compounds and the activities of PAL, TAT, SOD, CAT and POD enzymes in the Salvia miltiorrhiza cell culture. When SA is applied to the cell culture, phenolic compounds will increase and PAL, TAT, SOD, CAT, and POD enzymes will become more active. The accumulations of phenolic compounds and the PAL activity were stimulated 8h after the treatment with SA. The TAT activity was stimulated after 48 h. The resulting antioxidative enzymes' activities were greatly improved. SA elicitation on the phenolic acid accumulation was depended upon the application dosage and the time-duration. The suitable SA concentration for eliciting phenolic compound accumulations was 6.25-22.5mg/L. The elicitation effect of SA on phenolic compound accumulations correlated with the PAL activity, but not with the TAT activity. This indicates that PAL may be the key enzyme for the biosynthesis of salvianolic acid B and caffeic acid. The raised PAL activity leads to the improvement of the quantity of phenolic compounds. This could be of particular significance by using plant cell culture systems for biotechnological production of plant secondary metabolites such as salvianolic acid B and caffeic acid. Topics: Benzofurans; Biomass; Caffeic Acids; Oxidoreductases; Phenylalanine Ammonia-Lyase; Plant Proteins; Salicylic Acid; Salvia miltiorrhiza; Tyrosine Transaminase | 2010 |
Phenylpropanoid derivatives from edible canna, Canna edulis.
Two phenylpropanoid sucrose esters were isolated from dry rhizomes of Canna edulis Ker Gawl., along with a known phenylpropanoid sucrose ester and four known phenylpropanoids. On the basis of analysis of spectroscopic data and chemical evidence, these two phenylpropanoid sucrose esters were shown to be 3-O-p-coumaroyl-6-O-feruloyl-beta-D-fructofuranosyl 6-O-acetyl-alpha-D-glucopyranoside and 3,6-di-O-p-coumaroyl-beta-D-fructofuranosyl 6-O-acetyl-alpha-D-glucopyranoside. Topics: Benzofurans; Caffeic Acids; Chromatography, High Pressure Liquid; Cinnamates; Depsides; Esters; Magnetic Resonance Spectroscopy; Marantaceae; Molecular Structure; Optical Rotation; Phenylpropionates; Rosmarinic Acid; Sucrose | 2004 |