salicylates and usnic-acid

salicylates has been researched along with usnic-acid* in 16 studies

Reviews

1 review(s) available for salicylates and usnic-acid

ArticleYear
Antiangiogenic properties of lichen secondary metabolites.
    Phytotherapy research : PTR, 2021, Volume: 35, Issue:6

    Lichens are symbiotic organisms which are composed fungi and algae and/or cyanobacteria. They produce a variety of characteristic secondary metabolites. Such substances have various biological properties including antimicrobial, antiviral, and antitumor activities. Angiogenesis, the growth of new vessels from pre-existing vessels, contributes to numerous diseases including cancer, arthritis, atherosclerosis, infectious, and immune disorders. Antiangiogenic therapy is a promising approach for the treatment of such diseases by inhibiting the new vessel formation. Technological advances have led to the development of various antiangiogenic agents and have made possible antiangiogenic therapy in many diseases associated with angiogenesis. Some lichens and their metabolites are used in the drug industry, but many have not yet been tested for their antiangiogenic effects. The cytotoxic and angiogenic capacities of lichen-derived small molecules have been demonstrated in vivo and in vitro experiments. Therefore, some of them may be used as antiangiogenic agents in the future. The secondary compounds of lichen whose antiangiogenic effect has been studied in the literature are usnic acid, barbatolic acid, vulpinic acid, olivetoric acid, emodin, secalonic acid D, and parietin. In this article, we review the antiangiogenic effects and cellular targets of these lichen-derived metabolites.

    Topics: Angiogenesis Inhibitors; Anti-Infective Agents; Benzofurans; Biological Products; Cyanobacteria; Emodin; Fungi; Furans; Humans; Lichens; Phenylacetates; Salicylates; Xanthones

2021

Other Studies

15 other study(ies) available for salicylates and usnic-acid

ArticleYear
Structure and Chemical Analysis of Major Specialized Metabolites Produced by the Lichen Evernia prunastri.
    Chemistry & biodiversity, 2020, Volume: 17, Issue:1

    We performed comparative profiling of four specialized metabolites in the lichen Evernia prunastri, collected at three different geographic locations, California and Maine, USA, and Yoshkar Ola, Mari El, Russia. Among the compounds produced at high concentrations that were identified in all three specimens, evernic acid, usnic acid, lecanoric acid and chloroatranorin, evernic acid was the most abundant. Two depsidones, salazinic acid and physodic acid, were detected in the Yoshkar-Ola collection only. The crystalline structure of evernic acid (2-hydroxy-4-[(2-hydroxy-4-methoxy-6-methylbenzoyl)oxy]-6-methylbenzoate) (hmb) revealed two crystallographically and conformationally distinct hmb anions, along with two monovalent sodium atoms. One hmb moiety contained an exotetradentate binding mode to sodium, whereas the other exhibited an exohexadentate binding mode to sodium. Embedded edge-sharing {Na

    Topics: Benzofurans; Hydroxybenzoates; Lichens; Models, Molecular; Salicylates

2020
Lichen secondary metabolites affect growth of Physcomitrella patens by allelopathy.
    Protoplasma, 2017, Volume: 254, Issue:3

    Lichen secondary metabolites can function as allelochemicals and affect the development and growth of neighboring bryophytes, fungi, vascular plants, microorganisms, and even other lichens. Lichen overgrowth on bryophytes is frequently observed in nature even though mosses grow faster than lichens, but there is still little information on the interactions between lichens and bryophytes.In the present study, we used extracts from six lichen thalli containing secondary metabolites like usnic acid, protocetraric acid, atranorin, lecanoric acid, nortistic acid, and thamnolic acid. To observe the influence of these metabolites on bryophytes, the moss Physcomitrella patens was cultivated for 5 weeks under laboratory conditions and treated with lichen extracts. Toxicity of natural mixtures of secondary metabolites was tested at three selected doses (0.001, 0.01, and 0.1 %). When the mixture contained substantial amounts of usnic acid, we observed growth inhibition of protonemata and reduced development of gametophores. Significant differences in cell lengths and widths were also noticed. Furthermore, usnic acid had a strong effect on cell division in protonemata suggesting a strong impact on the early stages of bryophyte development by allelochemicals contained in the lichen secondary metabolites.Biological activities of lichen secondary metabolites were confirmed in several studies such as antiviral, antibacterial, antitumor, antiherbivore, antioxidant, antipyretic, and analgetic action or photoprotection. This work aimed to expand the knowledge on allelopathic effects on bryophyte growth.

    Topics: Allelopathy; Benzofurans; Bryopsida; Cell Division; Cell Size; Germ Cells, Plant; Heterocyclic Compounds, 3-Ring; Hydroxybenzoates; Lichens; Plant Extracts; Salicylates; Secondary Metabolism

2017
Anticancer activities of selected species of North American lichen extracts.
    Phytotherapy research : PTR, 2015, Volume: 29, Issue:1

    Cancer is the second leading cause of human deaths in the USA. Despite continuous efforts to treat cancer over the past 50 years, human mortality rates have not decreased significantly. Natural products, such as lichens, have been good sources of anticancer drugs. This study reports the cytotoxic activity of crude extracts of 17 lichen species against Burkitt's lymphoma (Raji) cells. Out of the 17 lichen species, extracts from 14 species showed cytotoxicity against Raji cells. On the basis of IC50 values, we selected Xanthoparmelia chlorochroa and Tuckermannopsis ciliaris to study the mechanism of cell death. Viability of normal lymphocytes was not affected by the extracts of X. chlorochroa and T. ciliaris. We found that extracts from both lichens decreased proliferation, accumulated cells at the G0 /G1 stage, and caused apoptosis in a dose-dependent manner. Both lichen extracts also caused upregulation of p53. The T. ciliaris extract upregulated the expression of TK1 but X. chlorochroa did not. We also found that usnic, salazinic, constictic, and norstictic acids were present in the extract of X. chlorochroa, whereas protolichesterinic acid in T. ciliaris extracts. Our data demonstrate that lichen extracts merit further research as a potential source of anticancer drugs.

    Topics: 4-Butyrolactone; Antineoplastic Agents; Apoptosis; Benzofurans; Cell Line, Tumor; Cell Survival; Humans; Inhibitory Concentration 50; Lactones; Lichens; Lymphocytes; Molecular Structure; Salicylates; Thymidine Kinase; Tumor Suppressor Protein p53; United States

2015
Lichenic extracts and metabolites as UV filters.
    Journal of photochemistry and photobiology. B, Biology, 2013, Mar-05, Volume: 120

    Three lichen extracts and ten lichenic compounds have been screened for their photoprotective activities. The determination of their Sun Protection Factor (SPF) and Protection Factor-UVA (PF-UVA) values was done in vitro. Among them, a Lasallia pustulata extract and gyrophoric acid exhibited SPF values over 5, which is better than Homosalate (SPF≈4). Their photoprotective properties are only slightly modified after a 2-hours period of irradiation. Salazinic acid and L. pustulata presented characteristics of a UVA booster like the butyl-methoxydibenzoylmethane (Avobenzone) (PF-UVA≈2 vs. 2.8 for Avobenzone). Salazinic acid was a better anion superoxide scavenger than ascorbic acid and none of them exhibited a photosensitizing cytotoxicity by exposing them on HaCaT cells to UVA radiations (photo-irritancy factor PIF<5).

    Topics: Antioxidants; Ascomycota; Benzoates; Benzofurans; Cell Line; Fumarates; Humans; Lactones; Salicylates; Sun Protection Factor; Ultraviolet Rays; Usnea

2013
[Study on the chemical constituents of two lichen plants from Meng Mountain].
    Zhong yao cai = Zhongyaocai = Journal of Chinese medicinal materials, 2013, Volume: 36, Issue:9

    To investigate the chemical constituents of the lichen plants Parmelia tinctorum and Parmelia nimandairana collected from Meng Mountain in Shandong province.. Various chromatographic techniques were used to isolate and purify the constituents and their structures were elucidated by means of spectral evidence and physiochemical properties.. Four compounds were isolated from Parmelia tinctorum and identified as: lecanoric acid (I), evernic acid (II), ethyl orsellinate (III) and 3,5-dihydroxytoluene (IV). Two compounds were isolated from Parmelia nimandairana and identified as: usnic acid (V) and salazinic acid (VI).. Compounds V and VI are isolated from Parmelia nimandairana for the first time.

    Topics: Benzofurans; China; Chromatography, High Pressure Liquid; Hydroxybenzoates; Lactones; Lichens; Molecular Structure; Resorcinols; Salicylates; Solvents

2013
Cytotoxic activity and antioxidant capacity of purified lichen metabolites: an in vitro study.
    Phytotherapy research : PTR, 2013, Volume: 27, Issue:3

    The purpose of this study was to investigate the effects of six lichen metabolites (diffractaic acid, lobaric acid, usnic acid, vicanicin, variolaric acid, protolichesterinic acid) on proliferation, viability and reactive oxygen species (ROS) level towards three human cancer cell lines, MCF-7 (breast adenocarcinoma), HeLa (cervix adenocarcinoma) and HCT-116 (colon carcinoma). Cells were treated with different concentrations (2.5-100 μM) of these compounds for 48 h. In this comparative study, our lichen metabolites showed various cytotoxic effects in a concentration-dependent manner, and usnic acid was the most potent cytotoxic agent, while variolaric acid did not inhibit the proliferation of any of the three cell lines used. All tested lichen compounds did not exhibit free radical scavenging activity using the 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay. The lichen metabolites did not significantly increase the intracellular ROS level and did not prevent oxidative injury induced by t-butylhydroperoxide in HeLa cells. To better clarify the mechanism(s) of cytotoxic effect induced by protolichesterinic acid in HeLa cells, we investigated apoptotic markers such as condensation and fragmentation of nuclear chromatin and activation of caspase-3, 8 and 9. Our results revealed that the antiproliferative activity of 40 μM protolichesterinic acid in HeLa cells is related to its ability to induce programmed cell death involving caspase-3, 8 and 9 activation.

    Topics: 4-Butyrolactone; Anisoles; Antioxidants; Apoptosis; Benzofurans; Caspases; Cell Line, Tumor; Cell Proliferation; Cell Survival; Depsides; Free Radical Scavengers; Humans; Hydroxybenzoates; Lactones; Lichens; Oxidative Stress; Reactive Oxygen Species; Salicylates

2013
Chemical composition of three Parmelia lichens and antioxidant, antimicrobial and cytotoxic activities of some their major metabolites.
    Phytomedicine : international journal of phytotherapy and phytopharmacology, 2012, Oct-15, Volume: 19, Issue:13

    The aim of this study is to investigate chemical composition of acetone extracts of the lichens Parmelia caperata, P. saxatilis and P. sulcata and antioxidant, antimicrobial and anticancer activities of some their major metabolites. The phytochemical analysis of acetone extracts of three Parmelia lichens were determined by HPLC-UV method. The predominant phenolic compounds in these extracts were protocetraric and usnic acids (P. caperata) and depsidone salazinic acid (other two species). Besides these compounds, atranorin and chloroatranorin, were also detected in some of these extracts. Antioxidant activity of their isolated metabolites was evaluated by free radical scavenging, superoxide anion radical scavenging and reducing power. As a result of the study salazinic acid had stronger antioxidant activity than protocetraric acid. The antimicrobial activity was estimated by determination of the minimal inhibitory concentration by the broth microdilution method. Both compounds were highly active with minimum inhibitory concentration values ranging from 0.015 to 1mg/ml. Anticancer activity was tested against FemX (human melanoma) and LS174 (human colon carcinoma) cell lines using MTT method. Salazinic acid and protocetraric acid were found to be strong anticancer activity toward both cell lines with IC(50) values ranging from 35.67 to 60.18μg/ml. The present study shows that tested lichen compounds demonstrated a strong antioxidant, antimicrobial, and anticancer effects. That suggest that these lichens can be used as new sources of the natural antimicrobial agents, antioxidants and anticancer compounds.

    Topics: Anti-Infective Agents; Antineoplastic Agents; Antioxidants; Benzofurans; Cell Line, Tumor; Drug Screening Assays, Antitumor; Heterocyclic Compounds, 3-Ring; Humans; Lactones; Lichens; Microbial Sensitivity Tests; Salicylates

2012
Biological activities of Toninia candida and Usnea barbata together with their norstictic acid and usnic acid constituents.
    International journal of molecular sciences, 2012, Nov-12, Volume: 13, Issue:11

    The aim of this study was to investigate the chemical composition of acetone extracts of the lichens Toninia candida and Usnea barbata and in vitro antioxidant, antimicrobial, and anticancer activities of these extracts together with some of their major metabolites. The chemical composition of T. candida and U. barbata extracts was determined using HPLC-UV analysis. The major phenolic compounds in these extracts were norstictic acid (T. candida) and usnic acid (U. barbata). Antioxidant activity was evaluated by free radical scavenging, superoxide anion radical scavenging, reducing power and determination of total phenolic compounds. Results of the study proved that norstictic acid had the largest antioxidant activity. The total content of phenols in the extracts was determined as the pyrocatechol equivalent. The antimicrobial activity was estimated by determination of the minimal inhibitory concentration using the broth microdilution method. The most active was usnic acid with minimum inhibitory concentration values ranging from 0.0008 to 0.5 mg/mL. Anticancer activity was tested against FemX (human melanoma) and LS174 (human colon carcinoma) cell lines using the microculture tetrazolium test. Usnic acid was found to have the strongest anticancer activity towards both cell lines with IC(50) values of 12.72 and 15.66 μg/mL.

    Topics: Anti-Infective Agents; Antioxidants; Ascomycota; Bacteria; Benzofurans; Biphenyl Compounds; Cell Cycle; Cell Line, Tumor; Cell Survival; Fungi; Humans; Inhibitory Concentration 50; Lactones; Lichens; Microbial Sensitivity Tests; Molecular Structure; Phenols; Picrates; Salicylates; Usnea

2012
A new depsidone and antibacterial activities of compounds from Usnea undulata Stirton.
    Journal of Asian natural products research, 2011, Volume: 13, Issue:12

    Usnea undulata Stirton (Usneaaceae) is a fruticose lichen used locally in ethnoveterinary medicine to treat mammary infections in cattle while human beings use it for the treatment of wounds in Eastern Cape, South Africa. Bioactivity-guided fractionation of its extracts led to the isolation and characterization of a new depsidone, 2'-O-methylhypostictic acid (8), together with seven known compounds, i.e. methyl β-orsellinate, norstictic acid, menegazziaic acid, (+) usnic acid, hypoconstictic acid, salazinic acid, and galbinic acid. The structures of the compounds were elucidated on the basis of their spectral analysis including homo- and hetero-nuclear correlation NMR experiments (COSY, NOESY, HMQC, and HMBC) and mass spectra as well as by comparison with available data in the literature. The minimum inhibitory concentrations (MICs) values of the compounds against six bacteria were determined. Compound 8 showed inhibitory activity against Bacillus cereus, Bacillus subtilis, and Staphylococcus epidermidis with MICs of 31, 62.5, 62.5 μg/ml, respectively. (+) Usnic acid was most active against B. subtilis, B. cereus, Staphylococcus aureus, and Escherichia coli with MICs of 8, 8, 31, and 31 μg/ml, respectively, while other compounds exhibited moderate activity.

    Topics: Animals; Anti-Bacterial Agents; Bacillus cereus; Bacillus subtilis; Benzofurans; Cattle; Depsides; Escherichia coli; Humans; Lactones; Microbial Sensitivity Tests; Salicylates; South Africa; Staphylococcus aureus; Usnea

2011
HPLC isolation of antioxidant constituents from Xanthoparmelia spp.
    Journal of pharmaceutical and biomedical analysis, 2010, Oct-10, Volume: 53, Issue:2

    A chromatographic method is described for the purification and characterization of secondary lichen substances with biological activity. A simple reversed-phase high-performance liquid chromatography method with gradient elution has been developed that allows the determination and isolation of salazinic, usnic and stictic acids from lichen samples in a single run and the quantification of every acid in the tested extracts. The antioxidant activity of both the isolated compounds and the respective lichen belonging to Xanthoparmelia genus was determined by the Oxygen Radical Absorbance Capacity (ORAC) assay; their effect as free radical scavengers, effect on cell survival by the 3(4,5-dimethyltiazol-2-yl)-2,5-diphenyltetrazolium reduction assay and 2',7'-dichlorofluorescin diacetate method were tested on U373 MG human astrocytome cell line. Both lichens extracts and all isolated compounds protected U373 MG cells from hydrogen peroxide-induced damage, suggesting that they could act as antioxidant agents in those neurodegenerative disorders associated with oxidative damage, such as Alzheimer's disease and Parkinson's disease.

    Topics: Antioxidants; Benzofurans; Cell Line, Tumor; Cell Survival; Chromatography, Reverse-Phase; Drug Screening Assays, Antitumor; Free Radical Scavengers; Heterocyclic Compounds, 4 or More Rings; Humans; Lactones; Lichens; Oxepins; Plant Extracts; Salicylates

2010
Molecular structural studies of lichen substances with antimicrobial, antiproliferative, and cytotoxic effects from Parmelia subrudecta.
    Preparative biochemistry & biotechnology, 2010, Volume: 40, Issue:4

    Lecanoric acid (1), orsellinic acid methyl ester (2), orcinol (3), and usnic acid (4) were isolated from the lichen Parmelia subrudecta, collected on Palma of the Canary Islands, Spain. Compounds 1, 2, 3, and 4 were purified by solvent extraction, silica gel column chromatography, and preparative high-performance liquid chromatography (HPLC) consecutively. The structures of the four compounds were elucidated by one- and two-dimensional nuclear magnetic resonance (NMR) experiments and mass spectrometric investigations. These compounds showed activity against important gram-positive and gram-negative pathogens like mycobacteria and multiresistant staphylococci. This activity is combined with antiproliferative activity and cytotoxicity.

    Topics: Anti-Infective Agents; Antineoplastic Agents; Bacteria; Bacterial Infections; Benzofurans; Cell Line, Tumor; Cell Proliferation; Humans; Lichens; Magnetic Resonance Spectroscopy; Molecular Structure; Neoplasms; Resorcinols; Salicylates; Spectrometry, Mass, Electrospray Ionization

2010
Antiproliferative effects on tumour cells and promotion of keratinocyte wound healing by different lichen compounds.
    Planta medica, 2009, Volume: 75, Issue:6

    Five compounds representative of major structural classes of lichen polyketides, VIZ. (+)-usnic (1), salazinic (2), vulpinic (3), gyrophoric (4), and evernic acids (5), were investigated for their ability to affect cell proliferation or wound healing, two functional targets of relevance for research on cancer or tissue regeneration. The experiments were carried out on MM98 malignant mesothelioma cells, A431 vulvar carcinoma cells, and HaCaT keratinocytes. The NRU and CV cytotoxicity assays showed high toxicity for (+)-usnic acid, intermediate toxicity for vulpinic acid, and low toxicity for salazinic, gyrophoric and evernic acids. Scratch wounding experiments on HaCaT monolayers, in the presence of subtoxic doses of lichen compounds, showed strong wound closure effects by (+)-usnic and gyrophoric acid, an intermediate effect by vulpinic and salazinic acids, and no effect by evernic acid. A combination of (+)-usnic and gyrophoric acids gave a further increase in the wound closure rates. The results of a cell migration test correlated with the wound healing data. In conclusion, (+)-usnic acid might be a particularly interesting compound for the prevention of hyperproliferation syndromes, while (+)-usnic and gyrophoric acids qualify as interesting leads in the promotion of tissue regeneration.

    Topics: Antineoplastic Agents, Phytogenic; Benzoates; Benzofurans; Cell Line, Tumor; Cell Proliferation; Female; Furans; Humans; Hydroxybenzoates; Keratinocytes; Lactones; Lichens; Neoplasms; Phenylacetates; Phytotherapy; Plant Extracts; Salicylates; Wound Healing

2009
Eubacterium rangiferina, a novel usnic acid-resistant bacterium from the reindeer rumen.
    Die Naturwissenschaften, 2008, Volume: 95, Issue:8

    Reindeer are able to eat and utilize lichens as an important source of energy and nutrients. In the current study, the activities of antibiotic secondary metabolites including usnic, antranoric, fumarprotocetraric, and lobaric acid commonly found in lichens were tested against a collection of 26 anaerobic rumen bacterial isolates from reindeer (Rangifer tarandus tarandus) using the agar diffusion method. The isolates were identified based on their 16S ribosomal ribonucleic acid (rRNA) gene sequences. Usnic acid had a potent antimicrobial effect against 25 of the isolates, belonging to Clostridiales, Enterococci, and Streptococci. Isolates of Clostridia and Streptococci were also susceptible to atranoric and lobaric acid. However, one isolate (R3_91_1) was found to be resistant to usnic, antranoric, fumarprotocetraric, and lobaric acid. R3_91_1 was also seen invading and adhering to lichen particles when grown in a liquid anaerobic culture as demonstrated by transmission electron microscopy. This was a Gram-negative, nonmotile rod (0.2-0.7 x 2.0-3.5 microm) with a deoxyribonucleic acid G + C content of 47.0 mol% and main cellular fatty acids including 15:0 anteiso-dimethyl acetal (DMA), 16:0 iso-fatty acid methyl ester (FAME), 13:0 iso-3OH FAME, and 17:0 anteiso-FAME, not matching any of the presently known profiles in the MIDI database. Combined, the phenotypic and genotypic traits including the 16S rRNA gene sequence show that R3_91_1 is a novel species inside the order Clostridiales within the family Lachnospiraceae, for which we propose the name Eubacterium rangiferina. This is the first record of a rumen bacterium able to tolerate and grow in the presence of usnic acid, indicating that the rumen microorganisms in these animals have adapted mechanisms to deal with lichen secondary metabolites, well known for their antimicrobial and toxic effects.

    Topics: Animals; Anti-Infective Agents; Benzofurans; Clostridium; DNA Primers; DNA, Bacterial; Drug Resistance, Bacterial; Eubacterium; Phylogeny; Reindeer; RNA, Ribosomal; Rumen; Salicylates

2008
Anti-proliferative lichen compounds with inhibitory activity on 12(S)-HETE production in human platelets.
    Phytomedicine : international journal of phytotherapy and phytopharmacology, 2004, Volume: 11, Issue:7-8

    Several lichen compounds, i.e. lobaric acid (1), a beta-orcinol depsidone from Stereocaulon alpinum L., (+)-protolichesterinic acid (2), an aliphatic alpha-methylene-gamma-lactone from Cetraria islandica Laur. (Parmeliaceae), (+)-usnic acid (3), a dibenzofuran from Cladonia arbuscula (Wallr.) Rabenh. (Cladoniaceae), parietin (4), an anthraquinone from Xanthoria elegans (Link) Th. Fr. (Calaplacaceae) and baeomycesic acid (5), a beta-orcinol depside isolated from Thamnolia vermicularis (Sw.) Schaer. var. subuliformis (Ehrh.) Schaer. were tested for inhibitory activity on platelet-type 12(S)-lipoxygenase using a cell-based in vitro system in human platelets. Lobaric acid (1) and (+)-protolichesterinic acid (2) proved to be pronounced inhibitors of platelet-type 12(S)-lipoxygenase, whereas baeomycesic acid (5) showed only weak activity (inhibitory activity at a concentration of 100 microg/ml: (1) 93.4+/-6.62%, (2) 98,5+/-1.19%, 5 14.7+/-2.76%). Usnic acid (3) and parietin (4) were not active at this concentration. 1 and 2 showed a clear dose-response relationship in the range of 3.33-100 microg/ml. According to the calculated IC50 values the highest inhibitory activity was observed for the depsidone 1 (IC50 = 28.5 microM) followed by 2 (IC50 = 77.0 microM). The activity of 1 was comparable to that of the flavone baicalein, which is known as a selective 12(S)-lipoxygenase inhibitor (IC50 = 24.6 microM).

    Topics: 12-Hydroxy-5,8,10,14-eicosatetraenoic Acid; 4-Butyrolactone; Benzoates; Benzofurans; Blood Platelets; Depsides; Emodin; Humans; In Vitro Techniques; Lactones; Lichens; Lipoxygenase; Lipoxygenase Inhibitors; Molecular Structure; Resorcinols; Salicylates

2004
Antimycobacterial activity of lichen metabolites in vitro.
    European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences, 1998, Volume: 6, Issue:2

    Several compounds, whose structures represent the most common chemical classes of lichen metabolites, were screened for in vitro activity against Mycobacterium aurum, a non-pathogenic organism with a similar sensitivity profile to M. tuberculosis. Of the compounds tested, usnic acid from Cladonia arbuscula exhibited the highest activity with an MIC value of 32 microg/ml. Atranorin and lobaric acid, both isolated from Stereocaulon alpinum, salazinic acid from Parmelia saxatilis and protolichesterinic acid from Cetraria islandica all showed MIC values >/=125 microg/ml.

    Topics: 4-Butyrolactone; Anti-Bacterial Agents; Benzofurans; Depsides; Hydroxybenzoates; Lactones; Lichens; Microbial Sensitivity Tests; Mycobacterium; Salicylates

1998