salicylates has been researched along with physcione* in 2 studies
1 review(s) available for salicylates and physcione
Article | Year |
---|---|
Antiangiogenic properties of lichen secondary metabolites.
Lichens are symbiotic organisms which are composed fungi and algae and/or cyanobacteria. They produce a variety of characteristic secondary metabolites. Such substances have various biological properties including antimicrobial, antiviral, and antitumor activities. Angiogenesis, the growth of new vessels from pre-existing vessels, contributes to numerous diseases including cancer, arthritis, atherosclerosis, infectious, and immune disorders. Antiangiogenic therapy is a promising approach for the treatment of such diseases by inhibiting the new vessel formation. Technological advances have led to the development of various antiangiogenic agents and have made possible antiangiogenic therapy in many diseases associated with angiogenesis. Some lichens and their metabolites are used in the drug industry, but many have not yet been tested for their antiangiogenic effects. The cytotoxic and angiogenic capacities of lichen-derived small molecules have been demonstrated in vivo and in vitro experiments. Therefore, some of them may be used as antiangiogenic agents in the future. The secondary compounds of lichen whose antiangiogenic effect has been studied in the literature are usnic acid, barbatolic acid, vulpinic acid, olivetoric acid, emodin, secalonic acid D, and parietin. In this article, we review the antiangiogenic effects and cellular targets of these lichen-derived metabolites. Topics: Angiogenesis Inhibitors; Anti-Infective Agents; Benzofurans; Biological Products; Cyanobacteria; Emodin; Fungi; Furans; Humans; Lichens; Phenylacetates; Salicylates; Xanthones | 2021 |
1 other study(ies) available for salicylates and physcione
Article | Year |
---|---|
Anti-proliferative lichen compounds with inhibitory activity on 12(S)-HETE production in human platelets.
Several lichen compounds, i.e. lobaric acid (1), a beta-orcinol depsidone from Stereocaulon alpinum L., (+)-protolichesterinic acid (2), an aliphatic alpha-methylene-gamma-lactone from Cetraria islandica Laur. (Parmeliaceae), (+)-usnic acid (3), a dibenzofuran from Cladonia arbuscula (Wallr.) Rabenh. (Cladoniaceae), parietin (4), an anthraquinone from Xanthoria elegans (Link) Th. Fr. (Calaplacaceae) and baeomycesic acid (5), a beta-orcinol depside isolated from Thamnolia vermicularis (Sw.) Schaer. var. subuliformis (Ehrh.) Schaer. were tested for inhibitory activity on platelet-type 12(S)-lipoxygenase using a cell-based in vitro system in human platelets. Lobaric acid (1) and (+)-protolichesterinic acid (2) proved to be pronounced inhibitors of platelet-type 12(S)-lipoxygenase, whereas baeomycesic acid (5) showed only weak activity (inhibitory activity at a concentration of 100 microg/ml: (1) 93.4+/-6.62%, (2) 98,5+/-1.19%, 5 14.7+/-2.76%). Usnic acid (3) and parietin (4) were not active at this concentration. 1 and 2 showed a clear dose-response relationship in the range of 3.33-100 microg/ml. According to the calculated IC50 values the highest inhibitory activity was observed for the depsidone 1 (IC50 = 28.5 microM) followed by 2 (IC50 = 77.0 microM). The activity of 1 was comparable to that of the flavone baicalein, which is known as a selective 12(S)-lipoxygenase inhibitor (IC50 = 24.6 microM). Topics: 12-Hydroxy-5,8,10,14-eicosatetraenoic Acid; 4-Butyrolactone; Benzoates; Benzofurans; Blood Platelets; Depsides; Emodin; Humans; In Vitro Techniques; Lactones; Lichens; Lipoxygenase; Lipoxygenase Inhibitors; Molecular Structure; Resorcinols; Salicylates | 2004 |