salicylates has been researched along with merocyanine-dye* in 4 studies
4 other study(ies) available for salicylates and merocyanine-dye
Article | Year |
---|---|
Potentiation of merocyanine 540-mediated photodynamic therapy by salicylate and related drugs.
Simultaneous exposure to merocyanine 540 (MC540) and light of a suitable wavelength kills leukemia, lymphoma and neuroblastoma cells but is relatively well tolerated by normal pluripotent hematopoietic stem cells. This differential phototoxic effect has been exploited in preclinical models and a phase I clinical trial for the extracorporeal purging of autologous bone marrow grafts. Salicylate is known to potentiate the MC540-mediated photokilling of tumor cells. Assuming that salicylate induces a change in the plasma membrane of tumor cells (but not normal hematopoietic stem cells) that enhances the binding of dye molecules it has been suggested that salicylate may provide a simple and effective means of improving the therapeutic index of MC540-mediated photodynamic therapy. We report here on a direct test of this hypothesis in a murine model of bone marrow transplantation as well as in clonal cultures of normal murine hematopoietic progenitor cells. In both systems, salicylate enhanced the MC540-sensitized photoinactivation of leukemia cells and normal bone marrow cells to a similar extent and thus failed to improve the therapeutic index of MC540 significantly. On the basis of a series of dye-binding studies, we offer an alternative explanation for the potentiating effect of salicylate. Rather than invoking a salicylate-induced change in the plasma membrane of tumor cells, we propose that salicylate displaces dye molecules from serum albumin, thereby enhancing the concentration of free (active) dye available for binding to tumor as well as normal hematopoietic stem cells. Topics: Animals; Anti-Inflammatory Agents, Non-Steroidal; Bone Marrow Transplantation; Drug Synergism; Female; Hematopoietic Stem Cells; Leukemia L1210; Light; Mice; Mice, Inbred C57BL; Mice, Inbred DBA; Oxygen; Photochemotherapy; Photosensitizing Agents; Pyrimidinones; Salicylates; Salicylic Acid; Serum Albumin, Bovine; Singlet Oxygen; Tumor Cells, Cultured | 1995 |
Enhancement of merocyanine 540 uptake and photodynamic cell killing by salicylates.
Salicylate and several structurally analogous compounds enhance merocyanine 540 (MC540)-photosensitized killing of leukemia cells (M. A. Anderson, B. Kalyanaraman, and J. B. Feix, Cancer Res., 53: 806-809, 1993). In this work, we show that salicylic acid enhances the binding of MC540 prior to illumination, as well as the light-stimulated uptake of MC540 by target L1210 murine and K562 human leukemia cells. Acetylsalicylic acid, 2,3- and 2,5-dihydroxybenzoic acids, and sodium benzoate also enhance MC540 uptake. The irradiation dose responses for loss of cell survival and enhanced MC540 uptake are well correlated, both being shifted to earlier time points in the presence of salicylate. Salicylic acid also enhanced photodynamic cell killing of A549 lung carcinoma and NIH:OVCAR-3 ovarian carcinoma cells, two cell types which are relatively resistant to MC540-mediated photosensitization. Cellular uptake of the anionic, potential-sensitive oxonol dye, bis-(1,3-dibutylbarbituric acid)-trimethine oxonol, is also increased by salicylate in a dose-dependent fashion. In contrast, cellular uptake of the cationic cyanine dye, 3,3'-dihexyloxacarbocyanine, is unaffected by salicylate. These studies suggest that increased uptake of MC540 is the basis of salicylate enhancement and that changes in plasma membrane potentials may play a mechanistic role in the potentiation of MC540 binding and cell killing. Topics: Animals; Benzoates; Benzoic Acid; Cell Survival; Drug Screening Assays, Antitumor; Drug Synergism; Fluorescence; Humans; Leukemia; Leukemia L1210; Mice; Neoplasms; Photochemotherapy; Photosensitizing Agents; Pyrimidinones; Salicylates; Salicylic Acid | 1994 |
Enhancement of merocyanine 540-mediated phototherapy by salicylate.
Merocyanine 540 (MC540) is a photosensitizing dye of potential use in the purging of cancer cells from autologous bone marrow explants. Treatment of marrow with MC540, followed by illumination with visible light, selectively kills neoplastic cells while sparing a sufficient number of stem cells to allow marrow engraftment. The photodynamic action of MC540 is thought to be mediated by reactive oxygen species, particularly singlet oxygen. We have previously shown that salicylic acid (SA) scavenges MC540-generated singlet oxygen. In this work, we sought to abrogate MC540-mediated cell killing of murine L1210 and human K562 leukemia cells with salicylate. Paradoxically, the presence of salicylate during illumination in the presence of MC540 appreciably enhanced cell killing. Enhancement was dependent on salicylate concentration in the range 0.1 to 10 mM, with 1.0 mM SA potentiating the MC540-mediated reduction in survival of L1210 and K562 cells by factors of 2.7 and 1.9, respectively. Neither preincubation with SA followed by washing prior to illumination nor addition of SA following illumination altered MC540-mediated cell killing, indicating that potentiation was dependent on the presence of SA during illumination. Illumination in the presence of salicylate alone did not diminish cell viability. In addition to SA, a number of structurally related compounds including dihydroxybenzoic acids, aspirin, and sodium benzoate also enhanced MC540-mediated cell killing. Potentiation of leukemic cell killing by salicylate could provide a basis for enhancing the clinical efficacy of MC540-mediated phototherapy. Topics: Animals; Cell Survival; Drug Synergism; Gentisates; Humans; Hydroxides; Hydroxybenzoates; Hydroxyl Radical; Leukemia; Leukemia L1210; Oxygen; Photochemotherapy; Photosensitizing Agents; Pyrimidinones; Salicylates; Salicylic Acid | 1993 |
Production of singlet oxygen-derived hydroxyl radical adducts during merocyanine-540-mediated photosensitization: analysis by ESR-spin trapping and HPLC with electrochemical detection.
Activated oxygen species produced during merocyanine 540 (MC540)-mediated photosensitization have been examined by electron spin resonance (ESR) spin trapping and by trapping reactive intermediates with salicylic acid using HPLC with electrochemical detection (HPLC-EC) for product analysis. Visible light irradiation of MC540 associated with dilauroylphosphatidylcholine liposomes in the presence of the spin trap, 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) gave an ESR spectrum characteristic of the DMPO-hydroxyl radical spin adduct (DMPO/.OH). Addition of ethanol or methanol produced additional hyperfine splittings due to the respective hydroxyalkyl radical adducts, indicating the presence of free.OH.DMPO/.OH formation was not significantly inhibited by Desferal, catalase, or superoxide dismutase (SOD). Production of DMPO/.OH was strongly inhibited by azide and enhanced in samples prepared with deuterated phosphate buffer (PB-D2O), suggesting that singlet molecular oxygen (1O2) was an important intermediate. When MC540-treated liposomes were irradiated in the presence of salicylic acid (SA), HPLC-EC analysis indicated almost exclusive formation of 2,5-dihydroxybenzoic acid (2,5-DHBA), with production of very little 2,3-DHBA, in contrast to .OH generated by uv photolysis of H2O2, which gave nearly equimolar amounts of the two products. 2,5-DHBA production was enhanced in PB-D2O and inhibited by azide, again consistent with 1O2 intermediacy. 2,5-DHBA formation was significantly reduced in samples saturated with N2 or argon, and such samples showed no D2O enhancement. Ethanol had no effect on 2,5-DHBA production, even when present in large excess. Catalase and SOD also had no effect, and only a small inhibition was observed with Desferal. DMPO inhibited 2,5-DHBA production in a concentration-dependent fashion and enhanced formation of 2,3-DHBA. We propose that 1O2 reacts with DMPO to give an intermediate which decays to form DMPO/.OH and free.OH, and that the reaction between 1O2 and SA preferentially forms the 2,5-DHBA isomer. This latter process may provide the basis for a sensitive analytical method to detect 1O2 intermediacy. Singlet oxygen appears to be the principle activated oxygen species produced during MC540-mediated photosensitization. Topics: Chromatography, High Pressure Liquid; Cyclic N-Oxides; Electron Spin Resonance Spectroscopy; Free Radicals; Hydroxides; Hydroxyl Radical; Oxygen; Photochemistry; Pyrimidinones; Radiation-Sensitizing Agents; Salicylates | 1991 |