salicylates has been researched along with isopropyl-myristate* in 2 studies
2 other study(ies) available for salicylates and isopropyl-myristate
Article | Year |
---|---|
Influence of penetration enhancer on drug permeation from volatile formulations.
Previously we have reported the influence of supersaturation on the permeation of fentanyl across model membranes and skin. The findings indicated that the vehicle and, specifically its residence time in skin, influence the ability of the formulation to enhance membrane drug permeation. The aim of the present study was to probe the role of vehicle components on (trans)dermal drug delivery in more detail. To this end, three commonly used chemical penetration enhancers were selected for investigation namely, propylene glycol (PG), octyl salicylate (OSAL) and isopropyl myristate (IPM). A further objective was to clarify the mechanism of action of OSAL. Model spray formulations were prepared consisting of 10% (v/v) of individual enhancers in ethanol. Saturated and supersaturated systems were evaluated for their ability to promote fentanyl transport across human skin in vitro. Mass balance studies and determination of the extent of uptake of enhancers by skin were also conducted. The results indicated that increasing the degree of drug saturation (DS) does not promote drug permeation for formulations in PG but increasing drug DS did promote drug permeation for IPM and some OSAL systems. This probably reflects faster depletion of PG compared with IPM and OSAL. Non-linear modelling of the permeation data indicated that PG and IPM act to promote drug solubility in the membrane whereas OSAL appears to act as a skin penetration enhancer by increasing drug diffusivity in the skin. Topics: Administration, Cutaneous; Analgesics, Opioid; Female; Fentanyl; Humans; In Vitro Techniques; Myristates; Permeability; Propylene Glycol; Salicylates; Skin; Skin Absorption; Volatilization | 2012 |
The effect of vehicle on the diffusion of salicylic acid through hairless mouse skin.
The solubilities of salicylic acid in, and the fluxes through, hairless mouse skin from isopropyl myristate, 1-octanol, 1-propanol, propylene glycol, and formamide have been determined experimentally. Values for permeability coefficients (Kp) corresponding to the respective fluxes were determined from: flux/solubility = Kp. These values were then compared with values for the respective partition coefficients (P) which were calculated from the known solubility parameters for the vehicles (delta v), salicylic acid (delta i), and skin (delta s). Two different delta i values were used to calculate theoretical P values, one based on the peak solubility method and the other based on calculation from group contributions (11 and 14.4 (cal/cm3)1/2, respectively). There was good correlation between the values for theoretical log P - 1.42 and experimental log Kp for the delivery of salicylic acid from vehicles exhibiting solubility parameters in the range of delta v = 10-18 (cal/cm3)1/2, when delta i was assumed to be 14.4 (cal/cm3)1/2. There was also a good correlation between the values for theoretical log P - 2.09 and experimental log Kp for vehicles exhibiting solubility parameters in the range of delta v = 7.6-10 (cal/cm3)1/2, when delta i was assumed to be 11 (cal/cm3)1/2. Two different delta i values were used because salicylic acid apparently behaves like a polar molecule in polar vehicles and a nonpolar molecule in nonpolar vehicles. Qualitatively, fluxes and permeability coefficients were found to be inversely dependent on drug solubility in the vehicles, with a minimum that corresponded approximately to the point where delta v = delta i, and the minimum within the theoretical P curve.(ABSTRACT TRUNCATED AT 250 WORDS) Topics: Animals; Diffusion; Kinetics; Male; Mice; Mice, Hairless; Myristates; Permeability; Pharmaceutical Vehicles; Salicylates; Salicylic Acid; Skin Absorption; Solubility | 1986 |