salicylates and brassinolide

salicylates has been researched along with brassinolide* in 1 studies

Other Studies

1 other study(ies) available for salicylates and brassinolide

ArticleYear
A wound-inducible tobacco peroxidase gene expresses preferentially in the vascular system.
    Plant & cell physiology, 2002, Volume: 43, Issue:1

    A tobacco peroxidase gene tpoxN1 was reported to be expressed within 1 h after wounding in leaves [Hiraga et al. (2000a) Plant Cell Physiol. 41: 165]. We describe here further results on the wound-induced tpoxN1 expression. The quick tpoxN1 induction occurred preferentially in stems and petioles, but was negligible in leaf blades even 8 h after wounding. Induced GUS activity was also detected rapidly after wounding in the stem of transgenic tobacco plants carrying the tpoxN1 promoter::GUS fusion gene, localized mainly in the vascular systems where it was maintained this level for 14 d or more. Strong GUS activity was also found in the petiole and veinlet as well as the epidermal tissue in the stem. Treatment of known inducers for wound-responsive genes such as jasmonate, 1-aminocyclopropane-1-carboxylate, spermine, phytohormones and other stress treatments did not enhance wound-induced tpoxN1 gene expression in stems at all, but rather repressed it in some cases. Studies using metabolic inhibitors suggested that phosphorylation and dephosphorylation of proteins together with de novo protein synthesis are likely to be involved in the wound-induced tpoxN1 expression as well as some other wound-responsive genes. Thus, tpoxN1 is a unique wound-inducible and possible wound-healing gene which is rapidly expressed being maintained for a long time in veins via an unknown wound-signaling pathway(s).

    Topics: Acetates; Amino Acids, Cyclic; Brassinosteroids; Cholestanols; Cyclopentanes; Gene Expression Regulation, Enzymologic; Gene Expression Regulation, Plant; Histocytochemistry; Naphthaleneacetic Acids; Nicotiana; Oxylipins; Peroxidase; Phosphorylation; Plant Epidermis; Plant Growth Regulators; Plant Stems; Plants, Genetically Modified; RNA, Plant; Salicylates; Signal Transduction; Spermine; Steroids, Heterocyclic; Stress, Mechanical

2002