salicylates has been researched along with beta-farnesene* in 2 studies
1 review(s) available for salicylates and beta-farnesene
Article | Year |
---|---|
New slow release mixture of (E)-β-farnesene with methyl salicylate to enhance aphid biocontrol efficacy in wheat ecosystem.
Semiochemical use is a promising way to reduce damage from pests by improving natural control in agro-ecosystems. The aphid alarm pheromone (E)-β-farnesene (EβF) and herbivore-induced methyl salicylate (MeSA) are two volatile cues to induce changes in aphid behavior with functional significance. Because of limitations related to the volatility and oxidization of EβF and MeSA under natural conditions, slow-release and antioxidant techniques should be developed and optimized before application. Here, a slow-release alginate bead of EβF mixed with MeSA was first designed and manufactured. We hypothesized that a mixture of these two semiochemicals could be effective in controlling Sitobion miscanthi in wheat crops. Both MeSA and EβF in alginate beads were released stably and continuously for at least 15 days in the laboratory, whereas EβF in paraffin oil and pure MeSA were released for only 2 and 7 days, respectively. In 2018 field experiments, EβF and MeSA alone or in association significantly decreased the abundance of alate and apterous aphids. An increased abundance of mummified aphids enhanced by higher parasitism rates was observed when using EβF and MeSA in association, with a significant reduction of apterous abundance, more so than EβF or MeSA alone. In 2019, plots treated with a mixture of EβF and MeSA showed significantly decreased abundance of alate and apterous aphids with higher parasitism rates compared with the control. The new slow-release alginate bead containing a mixture of EβF with MeSA could be the most efficient formulation to control S. miscanthi population by attracting parasitoids in the wheat agro-ecosystem. © 2021 Society of Chemical Industry. © 2021 Society of Chemical Industry. Topics: Animals; Aphids; Ecosystem; Pheromones; Salicylates; Sesquiterpenes; Triticum | 2021 |
1 other study(ies) available for salicylates and beta-farnesene
Article | Year |
---|---|
Orco mediates olfactory behaviors and winged morph differentiation induced by alarm pheromone in the grain aphid, Sitobion avenae.
Olfaction is crucial for short distance host location and pheromone detection by insects. Complexes of olfactory receptors (ORs) are composed of odor-specific ORs and OR co-receptors (Orco). Orcos are widely co-expressed with odor-specific ORs and are conserved across insect taxa. A number of Orco orthologs have been studied to date, although none has been identified in cereal aphids. In this study, an Orco gene ortholog was cloned from the grain aphid, Sitobion avenae, and named "SaveOrco"; RNA interference (RNAi) reduced the expression of SaveOrco to 34.11% in aphids, resulting in weaker EAG (electroantennogram) responses to plant volatiles (Z-3-hexene-1-ol; methyl salicylate, MeSA) and aphid alarm pheromone (E-β-farnesene, EBF). Aphid wing differentiation induced by EBF was investigated in both RNAi treated and untreated aphids. EBF induced production of winged aphids in both pre-natal and post-natal periods in untreated aphids, but no such induction was observed in the RNAi-treated aphids. We conclude that SaveOrco is crucial for the aphid's response to pheromones and other volatiles, and is involved in wing differentiation triggered by EBF. Topics: Animals; Aphids; Arthropod Antennae; Electrophysiological Phenomena; Hexanols; Pheromones; Receptors, Odorant; RNA Interference; Salicylates; Sesquiterpenes; Wings, Animal | 2015 |