salicylates has been researched along with benzophenone* in 3 studies
3 other study(ies) available for salicylates and benzophenone
Article | Year |
---|---|
Air-assisted liquid-liquid microextraction based on solidification of floating deep eutectic solvent for the analysis of ultraviolet filters in water samples by high performance liquid chromatography with the aid of response surface methodology.
For this work, a novel air-assisted liquid-liquid microextraction based on solidification of floating deep eutectic solvent (AA-LLME-SFDES), coupled with a high performance liquid chromatography (HPLC) method was developed for the detection of benzophenone and salicylate ultraviolet filters in water samples. Three types of fatty acid-based hydrophobic deep eutectic solvents (DESs) with low viscosity, low-density, and melting point close to room temperature were prepared and employed as extraction solvents. This air-assisted liquid-liquid microextraction was carried out in a glass centrifuge tube. Subsequently, the glass tube was introduced into ice-water bath and held for 3 min, during which the upper DES phase was solidified. The water phase was easily extracted using a syringe equipped with a long needle, and later, the glass tube was removed from ice-water bath. The solidified DES phase was immediately melted at room temperature and used for HPLC analysis. The response surface methodology was employed to optimize some influencing parameters such as the volume of the extraction solvent, the pH value of sample solution, the number of extraction cycles, and the addition of salt. A quadratic model, namely a central composite design, was used to replace the conventional single factor analysis. It was found that under optimal conditions, the limits of determination and quantification were 0.045-0.54 µg L Topics: Benzophenones; Chemistry Techniques, Analytical; Chromatography, High Pressure Liquid; Fatty Acids; Hydrophobic and Hydrophilic Interactions; Limit of Detection; Liquid Phase Microextraction; Salicylates; Solvents; Ultraviolet Rays; Water; Water Pollutants, Chemical | 2020 |
Optimization of matrix solid-phase dispersion for the rapid determination of salicylate and benzophenone-type UV absorbing substances in marketed fish.
A simple and effective method for the rapid determination of five salicylate and benzophenone-type UV absorbing substances in marketed fish is described. The method involves the use of matrix solid-phase dispersion (MSPD) prior to their determination by on-line silylation gas chromatography tandem mass spectrometry (GC-MS/MS). The parameters that affect the extraction efficiency were optimized using a Box-Behnken design method. The optimal extraction conditions involved dispersing 0.5g of freeze-dried powdered fish with 1.0g of Florisil using a mortar and pestle. This blend was then transferred to a solid-phase extraction (SPE) cartridge containing 1.0g of octadecyl bonded silica (C18), as the clean-up co-sorbent. The target analytes were then eluted with 7mL of acetonitrile. The extract was derivatized on-line in the GC injection-port by reaction with a trimethylsilylating (TMS) reagent. The TMS-derivatives were then identified and quantitated by GC-MS/MS. The limits of quantitation (LOQs) were less than 0.1ng/g. Topics: Animals; Bass; Benzophenones; Fish Products; Food Contamination; Gadus morhua; Gas Chromatography-Mass Spectrometry; Salicylates; Salmon; Seafood; Solid Phase Extraction; Sunscreening Agents; Tilapia | 2014 |
Ionic liquid-based ultrasound-assisted dispersive liquid-liquid microextraction followed high-performance liquid chromatography for the determination of ultraviolet filters in environmental water samples.
In the present study, a rapid, highly efficient and environmentally friendly sample preparation method named ionic liquid-based ultrasound-assisted dispersive liquid-liquid microextraction (IL-USA-DLLME), followed by high performance liquid chromatography (HPLC) has been developed for the extraction and preconcentration of four benzophenone-type ultraviolet (UV) filters (viz. benzophenone (BP), 2-hydroxy-4-methoxybenzophenone (BP-3), ethylhexyl salicylate (EHS) and homosalate (HMS)) from three different water matrices. The procedure was based on a ternary solvent system containing tiny droplets of ionic liquid (IL) in the sample solution formed by dissolving an appropriate amount of the IL extraction solvent 1-hexyl-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate ([HMIM][FAP]) in a small amount of water-miscible dispersive solvent (methanol). An ultrasound-assisted process was applied to accelerate the formation of the fine cloudy solution, which markedly increased the extraction efficiency and reduced the equilibrium time. Various parameters that affected the extraction efficiency (such as type and volume of extraction and dispersive solvents, ionic strength, pH and extraction time) were evaluated. Under optimal conditions, the proposed method provided good enrichment factors in the range of 354-464, and good repeatability of the extractions (RSDs below 6.3%, n=5). The limits of detection were in the range of 0.2-5.0 ng mL(-1), depending on the analytes. The linearities were between 1 and 500 ng mL(-1) for BP, 5 and 500 ng mL(-1) for BP-3 and HMS and 10 and 500 ng mL(-1) for EHS. Finally, the proposed method was successfully applied to the determination of UV filters in river, swimming pool and tap water samples and acceptable relative recoveries over the range of 71.0-118.0% were obtained. Topics: Benzophenones; Chromatography, High Pressure Liquid; Hydrocarbons, Fluorinated; Hydrogen-Ion Concentration; Imidazoles; Ionic Liquids; Liquid Phase Microextraction; Osmolar Concentration; Salicylates; Sonication; Water Pollutants, Chemical | 2012 |