salicylates has been researched along with 2--deoxyadenosine-triphosphate* in 1 studies
1 other study(ies) available for salicylates and 2--deoxyadenosine-triphosphate
Article | Year |
---|---|
Potent competitive inhibition of human ribonucleotide reductase by a nonnucleoside small molecule.
Human ribonucleotide reductase (hRR) is crucial for DNA replication and maintenance of a balanced dNTP pool, and is an established cancer target. Nucleoside analogs such as gemcitabine diphosphate and clofarabine nucleotides target the large subunit (hRRM1) of hRR. These drugs have a poor therapeutic index due to toxicity caused by additional effects, including DNA chain termination. The discovery of nonnucleoside, reversible, small-molecule inhibitors with greater specificity against hRRM1 is a key step in the development of more effective treatments for cancer. Here, we report the identification and characterization of a unique nonnucleoside small-molecule hRR inhibitor, naphthyl salicylic acyl hydrazone (NSAH), using virtual screening, binding affinity, inhibition, and cell toxicity assays. NSAH binds to hRRM1 with an apparent dissociation constant of 37 µM, and steady-state kinetics reveal a competitive mode of inhibition. A 2.66-Å resolution crystal structure of NSAH in complex with hRRM1 demonstrates that NSAH functions by binding at the catalytic site (C-site) where it makes both common and unique contacts with the enzyme compared with NDP substrates. Importantly, the IC Topics: Catalytic Domain; Cell Cycle; Crystallography, X-Ray; Deoxyadenine Nucleotides; Drug Screening Assays, Antitumor; Humans; Hydrazones; Naphthalenes; Ribonucleoside Diphosphate Reductase; Ribonucleotide Reductases; Salicylates; Tumor Suppressor Proteins | 2017 |