safranine-t and tetraphenylphosphonium

safranine-t has been researched along with tetraphenylphosphonium* in 3 studies

Other Studies

3 other study(ies) available for safranine-t and tetraphenylphosphonium

ArticleYear
Role of the Mmr efflux pump in drug resistance in Mycobacterium tuberculosis.
    Antimicrobial agents and chemotherapy, 2013, Volume: 57, Issue:2

    Efflux pumps are membrane proteins capable of actively transporting a broad range of substrates from the cytoplasm to the exterior of the cell. Increased efflux activity in response to drug treatment may be the first step in the development of bacterial drug resistance. Previous studies showed that the efflux pump Mmr was significantly overexpressed in strains exposed to isoniazid. In the work to be described, we constructed mutants lacking or overexpressing Mmr in order to clarify the role of this efflux pump in the development of resistance to isoniazid and other drugs in M. tuberculosis. The mmr knockout mutant showed an increased susceptibility to ethidium bromide, tetraphenylphosphonium, and cetyltrimethylammonium bromide (CTAB). Overexpression of mmr caused a decreased susceptibility to ethidium bromide, acriflavine, and safranin O that was obliterated in the presence of the efflux inhibitors verapamil and carbonyl cyanide m-chlorophenylhydrazone. Isoniazid susceptibility was not affected by the absence or overexpression of mmr. The fluorometric method allowed the detection of a decreased efflux of ethidium bromide in the knockout mutant, whereas the overexpressed strain showed increased efflux of this dye. This increased efflux activity was inhibited in the presence of efflux inhibitors. Under our experimental conditions, we have found that efflux pump Mmr is mainly involved in the susceptibility to quaternary compounds such as ethidium bromide and disinfectants such as CTAB. The contribution of this efflux pump to isoniazid resistance in Mycobacterium tuberculosis still needs to be further elucidated.

    Topics: Acriflavine; Anti-Infective Agents, Local; Antineoplastic Agents; Antitubercular Agents; Bacterial Proteins; Cetrimonium; Cetrimonium Compounds; Drug Resistance, Bacterial; Enzyme Inhibitors; Ethidium; Gene Knockout Techniques; Isoniazid; Membrane Transport Proteins; Microbial Sensitivity Tests; Mycobacterium tuberculosis; Nitriles; Onium Compounds; Organophosphorus Compounds; Phenazines; Verapamil

2013
Carboxyatractylate inhibits the potentiating effect of lipophylic cation TPP+ on uncoupling activity of fatty acid.
    Biochemistry and molecular biology international, 1993, Volume: 30, Issue:6

    The effect of TPP+ on the fatty acid or FCCP-induced uncoupling in rat heart mitochondria was studied. It was found that (a) TPP+ increases the stimulation of oxygen consumption by palmitic acid or FCCP in the presence of oligomycin, (b) TPP+ greatly enhances the palmitic acid or FCCP-induced delta psi decrease. Both effects of TPP+ were strongly suppressed by carboxyatractylate in the case of palmitate but were not in the case of FCCP. The role of ATP/ADP-antiporter in the TPP+ and palmitic acid effects is discussed.

    Topics: Animals; Atractyloside; Carbonyl Cyanide p-Trifluoromethoxyphenylhydrazone; Fluorescent Dyes; In Vitro Techniques; Mitochondria, Heart; Oligomycins; Onium Compounds; Organophosphorus Compounds; Oxygen Consumption; Palmitic Acid; Palmitic Acids; Phenazines; Rats; Spectrometry, Fluorescence; Uncoupling Agents

1993
Selective killing of carcinoma cells "in vitro" by lipophilic-cationic compounds: a cellular basis.
    Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie, 1985, Volume: 39, Issue:5

    Lipophilic positively-charged compounds are facilitated across biological membranes by the transmembrane potential of intact cells. One such compound, rhodamine 123, has recently been shown to be selectively toxic toward a variety of transformed (carcinoma), epithelial cells in vitro (Lampidis et al., 1982; Bernal et al., 1982; Lampidis et al., 1983). A mechanism that could account for the selectivity of this agent would be a difference in the plasma membrane potential between normal and carcinoma cells. We report here that a significantly higher transmembrane potential has been found in a pair of carcinoma (83 mV for human breast and -99 mV for human cervix) as compared to normal (-56 mV for marsupial kidney and -48 mV for monkey kidney) epithelial cell lines. We also identified 3 other positively-charged lipophilic compounds, safranin 0, rhodamine 6G and tetraphenylphosphonium chloride (TPP+), which show selective toxicity toward carcinoma cells in vitro, while an uncharged lipophilic analog, rhodamine 116, does not. These data suggest that the higher plasma membrane potential of carcinoma cells may in part contribute to the preferential accumulation and selective toxicity of the lipophilic cationic compounds we have examined. An extension of this concept to an in vivo environment could lead to a class of cationic compounds which selectively exploit differences between normal and carcinoma cells.

    Topics: Animals; Antineoplastic Agents; Breast Neoplasms; Cell Line; Female; Haplorhini; HeLa Cells; Humans; Kidney; Marsupialia; Membrane Potentials; Onium Compounds; Organophosphorus Compounds; Phenazines; Rhodamines; Xanthenes

1985