s-nitrosocysteine has been researched along with zinquin* in 4 studies
4 other study(ies) available for s-nitrosocysteine and zinquin
Article | Year |
---|---|
S-Nitroso compounds interfere with zinc probing by Zinquin.
The intracellular homeostasis of zinc is postulated to be controlled by signaling through nitric oxide (NO). Administration of the NO donor S-nitrosocysteine (SNOC) caused a rapid drop in the fluorescence of the zinc-specific fluorescence of the zinc probe zinquin in C6 glioma cells. Tentatively, a strong effect of NO on the level of mobile intracellular zinc ions was concluded. However, zinc analysis with atomic absorption spectrometry demonstrated that the total cellular zinc level was not changed under these conditions. Sodium nitrite or an NO donor devoid of sulfhydryl groups (diethylamine NONOate) exerted no degrading effect on the Zn/zinquin fluorescence, but cysteine alone evoked a similar decline as SNOC. Hence, the sulfhydryl groups of cysteine seem to compete for zinc from the Zn/zinquin complex. Analysis of the reaction products by mass spectrometry demonstrated that cysteine caused a depletion of zinc from the Zn/zinquin complex, whereas an NO donor without sulfhydryl groups (diethylamine NONOate) did not. It is concluded that great caution should be employed when using S-nitroso compounds together with zinquin in investigations of intracellular zinc homeostasis. Topics: Animals; Cysteine; Fluorescence; Molecular Probes; Nitric Oxide; Quinolones; Rats; S-Nitrosothiols; Spectrometry, Fluorescence; Spectrometry, Mass, Electrospray Ionization; Time Factors; Tosyl Compounds; Zinc | 2004 |
Nitric oxide-induced changes in intracellular zinc homeostasis are mediated by metallothionein/thionein.
We hypothesized that metallothionein (MT), a cysteine-rich protein with a strong affinity for Zn(2+), plays a role in nitric oxide (NO) signaling events via sequestration or release of Zn(2+) by the unique thiolate clusters of the protein. Exposing mouse lung fibroblasts (MLF) to the NO donor S-nitrosocysteine resulted in 20-30% increases in fluorescence of the Zn(2+)-specific fluorophore Zinquin that were rapidly reversed by the Zn(2+) chelator N,N,N',N'-tetrakis-(2-pyridylmethyl)ethylenediamine. The absence of a NO-mediated increase in labile Zn(2+) in MLF from MT knockouts and its restoration after MT complementation by adenoviral gene transfer inferred a critical role for MT in the regulation of Zn(2+) homeostasis by NO. Additional data obtained in sheep pulmonary artery endothelial cells suggested a role for the apo form of MT, thionein (T), as a Zn(2+)-binding protein in intact cells, as overexpression of MT caused inhibition of NO-induced changes in labile Zn(2+) that were reversed by Zn(2+) supplementation. Furthermore, fluorescence-resonance energy-transfer data showed that overexpression of green fluorescent protein-modified MT prevented NO-induced conformational changes, which are indicative of Zn(2+) release from thiolate clusters. This effect was restored by Zn(2+) supplementation. Collectively, these data show that MT mediates NO-induced changes in intracellular Zn(2+) and suggest that the ratio of MT to T can regulate Zn(2+) homeostasis in response to nitrosative stress. Topics: Animals; Cells, Cultured; Chelating Agents; Cysteine; Endothelium, Vascular; Ergothioneine; Ethylenediamines; Female; Fibroblasts; Fluorescent Dyes; Gene Expression; Homeostasis; Lung; Male; Metallothionein; Mice; Mice, Inbred C57BL; Mice, Knockout; Nitric Oxide; Nitric Oxide Donors; Pulmonary Artery; Quinolones; S-Nitrosothiols; Sheep; Spectrometry, Fluorescence; Tosyl Compounds; Zinc | 2002 |
Metallothionein, nitric oxide and zinc homeostasis in vascular endothelial cells.
Recent in vitro studies suggest that the oxidoreductive capacity of metal thiolate clusters in metallothionein (MT) contributes to intracellular zinc homeostasis. We used fluorescence-based techniques to address this hypothesis in intact endothelial cells, focusing on the contributory role of the important redox signaling molecule, nitric oxide. Microspectrofluorometry with Zinquin revealed that the exposure of cultured sheep pulmonary artery endothelial cells to S-nitrosocysteine resulted in the release of N, N,N',N'-tetrakis(2. pyridylmethyl)ethylendiamine (TPEN) chelatable zinc. Cultured sheep pulmonary artery endothelial cells were transfected with a plasmid expression vector suitable for fluorescence resonance energy transfer containing the cDNA of MT sandwiched between two mutant green fluorescent proteins. The exposure of cultured sheep pulmonary artery endothelial cells transfected with this chimera to nitric oxide donors or to agents that increased cytoplasmic Ca(2+) via endogenously generated nitric oxide decreased the efficiency of fluorescence resonance energy transfer in a manner consistent with the release of metal (Zn) from MT. A physiological role for this interaction in intact tissue was supported by the lack of myogenic reflex in resistance arteries of MT knockout mice unless endogenous nitric oxide synthesis was blocked. These data suggest an important role for metal thiolate clusters of MT in nitric oxide signaling in the vascular wall. Topics: Animals; Antioxidants; Cells, Cultured; Chelating Agents; Cysteine; Drug Interactions; Endothelium, Vascular; Ethylenediamines; Fluorescent Dyes; Homeostasis; Metallothionein; Mice; Mice, Knockout; Nitric Oxide; Nitroso Compounds; Oxidation-Reduction; Pulmonary Artery; Quinolones; S-Nitrosothiols; Sheep; Tosyl Compounds; Zinc | 2000 |
Nitric oxide mediates intracytoplasmic and intranuclear zinc release.
We previously described that NO. leads to destruction of ZnS clusters and release of Zn2+ from various proteins including zinc finger transcription factors. To assess the relevance in living cells, we investigated, whether exogenous NO. leads to an increase of cytoplasmic and nuclear free Zn2+. L929 cells, mouse splenocytes, or rat aorta endothelial cells were labeled with Zinquin-E, a Zn2+-specific fluorophore, and were treated with two different spontaneous NO donors, S-nitrosocysteine or DETA/NO. Both NO donors strongly increased the Zn2+-dependent fluorescence in the cellular cytosol and also in nuclei as compared to controls. NO-dependent Zn2+ release in splenocytes was quantitated by flow cytometry. These results show for the first time, that nitrosative stress mediates intracellular and intranuclear Zn2+ release which may be relevant in altering gene expression patterns. Topics: Animals; Aorta; Cell Line; Cell Nucleus; Cells, Cultured; Cysteine; Cytoplasm; Endothelium, Vascular; Fluorescent Dyes; Mice; Nitric Oxide; Quinolones; Rats; S-Nitrosothiols; Spleen; Tosyl Compounds; Triazenes; Zinc | 1997 |