s-nitrosocysteine has been researched along with serofendic-acid* in 2 studies
2 other study(ies) available for s-nitrosocysteine and serofendic-acid
Article | Year |
---|---|
Protective effect of serofendic acid on glutamate-induced neurotoxicity in rat cultured motor neurons.
We have previously reported that a sulfur-containing neuroprotective substance named serofendic acid was purified and isolated from lipophilic extract of fetal calf serum (FCS). In the present study, we investigated the effect of serofendic acid on glutamate neurotoxicity using embryonic rat spinal cord culture. When cultures were exposed to glutamate (20 microM) with a glutamate transporter inhibitor L-trans-pyrrolidine-2,4-decarboxylate (PDC; 40 microM) for 24 h, motor neurons were injured through both N-methyl-D-aspartate and alpha-amino-3-hydroxy-5-methylisoxazole/kainate receptors. This glutamate neurotoxicity was attenuated by nitric oxide (NO) synthase inhibitors. Serofendic acid (0.1-5 microM) prevented glutamate neurotoxicity in a concentration-dependent manner. S-Nitrosocysteine (SNOC; 10 microM), an NO donor, induced motor neuronal death. Serofendic acid (5 microM) also prevented SNOC-induced neurotoxicity. These results indicate that serofendic acid protects cultured motor neurons from glutamate neurotoxicity by reducing the cytotoxic action of NO. Topics: Animals; Cell Survival; Cells, Cultured; Cysteine; Dicarboxylic Acids; Diterpenes; Dose-Response Relationship, Drug; Drug Administration Schedule; Drug Interactions; Embryo, Mammalian; Glutamic Acid; Motor Neurons; Neuroprotective Agents; Neurotransmitter Uptake Inhibitors; Nitric Oxide Donors; Pyrrolidines; Rats; S-Nitrosothiols; Spinal Cord; Time Factors | 2005 |
Serofendic acid prevents acute glutamate neurotoxicity in cultured cortical neurons.
We have previously reported that a novel neuroprotective substance named serofendic acid was purified and isolated from ether extract of fetal calf serum. In the present study, we investigated the effect of serofendic acid on acute neurotoxicity induced by L-glutamate (Glu) using primary cultures of rat cortical neurons. Exposure of cortical cultures to Glu for 1 h caused a marked decrease in cell viability, as determined by trypan blue exclusion. This acute Glu neurotoxicity was prevented by N-methyl-D-aspartate (NMDA) receptor antagonists, extracellular Ca(2+) removal, nitric oxide (NO) synthase inhibitor and NO scavenger. Serofendic acid prevented acute Glu neurotoxicity in a concentration-dependent manner. Acute neurotoxicity was induced by ionomycin, a Ca(2+) ionophore, and S-nitroso-L-cysteine, an NO donor. Serofendic acid also prevented both ionomycin- and S-nitroso-L-cysteine-induced neurotoxicity. Moreover, the protective effect of serofendic acid on acute Glu neurotoxicity was not affected by cycloheximide, a protein synthesis inhibitor, and actinomycin D, an RNA synthesis inhibitor. These results indicate that serofendic acid protects cultured cortical neurons from acute Glu neurotoxicity by reducing the cytotoxic action of NO and de novo protein synthesis is not required for this neuroprotection. Topics: Animals; Calcium; Cattle; Cell Survival; Cells, Cultured; Cerebral Cortex; Cysteine; Diterpenes; Dizocilpine Maleate; Dose-Response Relationship, Drug; Drug Combinations; Fetal Blood; Fetus; Ionomycin; Neurons; Neurotoxicity Syndromes; Nitric Oxide; Quinoxalines; Rats; S-Nitrosothiols; Sodium Glutamate; Time Factors; Valine | 2003 |