s-nitro-n-acetylpenicillamine and epigallocatechin-gallate

s-nitro-n-acetylpenicillamine has been researched along with epigallocatechin-gallate* in 1 studies

Other Studies

1 other study(ies) available for s-nitro-n-acetylpenicillamine and epigallocatechin-gallate

ArticleYear
Epigallocatechin-3-gallate relaxes the isolated bovine ophthalmic artery: involvement of phosphoinositide 3-kinase-Akt-nitric oxide/cGMP signalling pathway.
    European journal of pharmacology, 2009, Apr-17, Volume: 608, Issue:1-3

    The present study investigates the direct action and the underlying mechanism(s) of epigallocatechin-3-gallate (EGCG) vasomotor effects on the bovine isolated ophthalmic artery. Adjacent rings were cut from each artery and mounted in a wire miograph system for isometric recording. Concentration-response curves for EGCG were constructed by adding cumulative concentrations of the drug to arterial rings pre-contracted with 5-HT (1 microM). Effects of mechanical endothelial cell removal and of selective blockers of the nitric oxide (NO)/cGMP pathways were investigated on the EGCG relaxant responses. EGCG relaxed ophthalmic arteries and maximum relaxation was 78.4+/-2.64%. Mechanical removal of endothelium, blockade of soluble guanylyl cyclase by 1H-1,2,4-oxadiazolo [4,3-a]quinoxalin-1-one (ODQ, 1 and 5 microM) or inhibition of nitric oxide (NO) synthase by N(G)-nitro-L-arginine (L-NAME, 50 and 100 microM) reduced significantly the relaxant response to catechin; moreover, the NO donor S-nitroso-N-acetylpenicillamine (SNAP, 100 microM) significantly increased the vasorelaxant responses to EGCG. Relaxation to EGCG was inhibited by iberiotoxin (200 nM), a blocker of big-conductance Ca(2+)-activated K(+) (BK(Ca)) channel, whereas the blockade of K(ATP) channel by glibenclamide (5 microM) and of small-conductance Ca(2+)-activated K(+) (SK(Ca)) channel by apamin (100 nM) elicited no effect. Interestingly, also inhibition of phosphoinositide-3-kinase (PI3K) by wortmannin (100 nM) and of Akt by SH6 (1 microM) markedly decreased the EGCG-evoked vasorelaxation. These data suggest that EGCG induced vasorelaxation in ophthalmic arteries with endothelium-intact via the activation of the NO/cGMP signalling pathway and defined an intriguing role for PI3K and Akt as upstream mediators for activation of NO-mediated relaxant responses.

    Topics: Androstadienes; Animals; Catechin; Cattle; Cyclic GMP; Dose-Response Relationship, Drug; Enzyme Inhibitors; Guanylate Cyclase; Models, Biological; NG-Nitroarginine Methyl Ester; Nitric Oxide; Nitric Oxide Donors; Ophthalmic Artery; Oxadiazoles; Penicillamine; Peptides; Phosphatidylinositols; Proto-Oncogene Proteins c-akt; Quinoxalines; Serotonin; Signal Transduction; Vasodilation; Wortmannin

2009