s-nitro-n-acetylpenicillamine and acetovanillone

s-nitro-n-acetylpenicillamine has been researched along with acetovanillone* in 3 studies

Other Studies

3 other study(ies) available for s-nitro-n-acetylpenicillamine and acetovanillone

ArticleYear
A defect of neuronal nitric oxide synthase increases xanthine oxidase-derived superoxide anion and attenuates the control of myocardial oxygen consumption by nitric oxide derived from endothelial nitric oxide synthase.
    Circulation research, 2005, Feb-18, Volume: 96, Issue:3

    Endothelial nitric oxide synthase (eNOS) plays an important role in the control of myocardial oxygen consumption (MVO2) by nitric oxide (NO). A NOS isoform is present in cardiac mitochondria and it is derived from neuronal NOS (nNOS). However, the role of nNOS in the control of MVO2 remains unknown. MVO2 in left ventricular tissues from nNOS-/- mice was measured in vitro. Stimulation of NO production by bradykinin or carbachol induced a significant reduction in MVO2 in wild-type (WT) mice. In contrast to WT, bradykinin- or carbachol-induced reduction in MVO2 was attenuated in nNOS-/-. S-methyl-L-thiocitrulline, a potent isoform selective inhibitor of nNOS, had no effect on bradykinin-induced reduction in MVO2 in WT. Bradykinin-induced reduction in MVO2 in eNOS-/- mice, in which nNOS still exists, was also attenuated. The attenuated bradykinin-induced reduction in MVO2 in nNOS-/- was restored by preincubation with Tiron, ascorbic acid, Tempol, oxypurinol, or SB203850, an inhibitor of p38 kinase, but not apocynin. There was an increase in lucigenin-detectable superoxide anion (O2-) in cardiac tissues from nNOS-/- compared with WT. Tempol, oxypurinol, or SB203850 decreased O2- in all groups to levels that were not different from each other. There was an increase in phosphorylated p38 kinase normalized by total p38 kinase protein level in nNOS-/- compared with WT mice. These results indicate that a defect of nNOS increases O2- through the activation of xanthine oxidase, which is mediated by the activation of p38 kinase, and attenuates the control of MVO2 by NO derived from eNOS.

    Topics: Acetophenones; Animals; Bradykinin; Carbachol; Heart; Immunoblotting; In Vitro Techniques; Mice; Mice, Inbred C57BL; Mice, Inbred Strains; Myocardium; Nerve Tissue Proteins; Nitric Oxide; Nitric Oxide Synthase; Nitric Oxide Synthase Type I; Nitric Oxide Synthase Type II; Nitric Oxide Synthase Type III; Oxygen Consumption; Oxypurinol; p38 Mitogen-Activated Protein Kinases; Penicillamine; Phosphorylation; Reactive Oxygen Species; Superoxides; Xanthine Oxidase

2005
Chronic high pressure-induced arterial oxidative stress: involvement of protein kinase C-dependent NAD(P)H oxidase and local renin-angiotensin system.
    The American journal of pathology, 2004, Volume: 165, Issue:1

    Regardless of the underlying pathological mechanisms oxidative stress seems to be present in all forms of hypertension. Thus, we tested the hypothesis that chronic presence of high pressure itself elicits increased arterial O(2)(.-) production. Hypertension was induced in rats by abdominal aortic banding (Ab). Rats with Ab had elevated pressure in vessels proximal and normal pressure in vessels distal to the coarctation, yet both vascular beds were exposed to the same circulating factors. Compared to normotensive hind limb arteries (HLAs) hypertensive forelimb arteries (FLAs) exhibited 1) impaired dilations to acetylcholine and the nitric oxide donor S-nitroso-N-acetyl-D,L-penicillamine that were restored by administration of superoxide dismutase; 2) an increased production of O(2)(.-) (measured by lucigenin chemiluminescence and ethidium bromide fluorescence) that was inhibited or reduced by superoxide dismutase, the NAD(P)H oxidase inhibitors diphenyleneiodonium and apocynin, or the protein kinase C (PKC) inhibitors chelerythrine and staurosporine or by the angiotensin-converting enzyme (ACE) inhibitor captopril; and 3) increased ACE activity. In organ culture, exposure of isolated arteries of normotensive rats to high pressure (160 mmHg, for 24 hours) significantly increased O(2)(.-) production compared to that in arteries exposed to 80 mmHg. High pressure-induced O(2)(.-) generation was reduced by inhibitors of ACE and PKC. Incubation of cultured arteries with angiotensin II elicited significantly increased O(2)(.-) generation that was inhibited by chelerythrine. Thus, we propose that chronic presence of high pressure itself can elicit arterial oxidative stress, primarily by activating directly a PKC-dependent NAD(P)H oxidase pathway, but also, in part, via activation of the local renin-angiotensin system.

    Topics: Acetophenones; Acetylcholine; Alkaloids; Angiotensin II; Angiotensin-Converting Enzyme Inhibitors; Animals; Arteries; Benzophenanthridines; Captopril; Enzyme Inhibitors; Hypertension; Male; Models, Biological; NADPH Oxidases; Nitric Oxide Donors; Nitric Oxide Synthase; Onium Compounds; Organ Culture Techniques; Oxidative Stress; Penicillamine; Phenanthridines; Protein Kinase C; Rats; Rats, Wistar; Renin-Angiotensin System; Staurosporine; Superoxide Dismutase; Vasoconstrictor Agents; Vasodilator Agents

2004
NAD(P)H oxidase-generated superoxide anion accounts for reduced control of myocardial O2 consumption by NO in old Fischer 344 rats.
    American journal of physiology. Heart and circulatory physiology, 2003, Volume: 285, Issue:3

    We investigated the role of nitric oxide (NO) in the control of myocardial O2 consumption in Fischer 344 rats. In Fischer rats at 4, 14, and 23 mo of age, we examined cardiac function using echocardiography, the regulation of cardiac O2 consumption in vitro, endothelial NO synthase (eNOS) protein levels, and potential mechanisms that regulate superoxide. Aging was associated with a reduced ejection fraction [from 75 +/- 2% at 4 mo to 66 +/- 3% (P < 0.05) at 23 mo] and an increased cardiac diastolic volume [from 0.60 +/- 0.04 to 1.00 +/- 0.10 ml (P < 0.01)] and heart weight (from 0.70 +/- 0.02 to 0.90 +/- 0.02 g). The NO-mediated control of cardiac O2 consumption by bradykinin or enalaprilat was not different between 4 mo (36 +/- 2 or 34 +/- 3%) and 14 mo (29 +/- 1 or 25 +/- 3%) but markedly (P < 0.05) reduced in 23-mo-old Fischer rats (15 +/- 3 or 7 +/- 2%). The response to the NO donor S-nitroso-N-acetyl penicillamine was not different across groups (35%, 35%, and 44%). Interestingly, the eNOS protein level was not different at 4, 14, and 23 mo. The addition of tempol (1 mmol/l) to the tissue bath eliminated the depression in the control of cardiac O2 consumption by bradykinin (25 +/- 3%) or enalaprilat (28 +/- 3%) in 23-mo-old Fischer rats. We next examined the levels of enzymes involved in the production and breakdown of superoxide. The expression of Mn SOD, Cu/Zn SOD, extracellular SOD, and p67phox, however, did not differ between 4- and 23-mo-old rats. Importantly, there was a marked increase in gp91phox, and apocynin restored the defect in NO-dependent control of cardiac O2 consumption at 23 mo to that seen in 4-mo-old rats, identifying the role of NADPH oxidase. Thus increased biological activity of superoxide and not decreases in the enzyme that produces NO are responsible for the altered control of cardiac O2 consumption by NO in 23-mo-old Fischer rats. Increased oxidant stress in aging, by decreasing NO bioavailability, may contribute not only to changes in myocardial function but also to altered regulation of vascular tone and the progression of cardiac or vascular disease.

    Topics: Acetophenones; Aging; Angiotensin-Converting Enzyme Inhibitors; Animals; Antioxidants; Body Weight; Bradykinin; Cyclic N-Oxides; Enalaprilat; Membrane Glycoproteins; Myocardium; NADPH Oxidase 2; NADPH Oxidases; Nitric Oxide; Nitric Oxide Donors; Nitric Oxide Synthase; Nitric Oxide Synthase Type III; Organ Size; Oxygen Consumption; Penicillamine; Phosphoproteins; Rats; Rats, Inbred F344; Spin Labels; Superoxide Dismutase; Superoxide Dismutase-1; Superoxides

2003