s-nitro-n-acetylpenicillamine has been researched along with 1-3-dihydroxy-4-4-5-5-tetramethyl-2-(4-carboxyphenyl)tetrahydroimidazole* in 13 studies
13 other study(ies) available for s-nitro-n-acetylpenicillamine and 1-3-dihydroxy-4-4-5-5-tetramethyl-2-(4-carboxyphenyl)tetrahydroimidazole
Article | Year |
---|---|
Effect of exogenous nitric oxide on murine splenic immune response induced by Aggregatibacter actinomycetemcomitans lipopolysaccharide.
The aim of this study was to determine the effect of exogenous nitric oxide (NO) on the induction of murine splenic immune response to Aggregatibacter actinomycetemcomitans lipopolysaccharide (LPS) in vitro. BALB/c mice were immunized with A. actinomycetemcomitans LPS and a control group was sham-immunized. Spleen cells were obtained, cultured and stimulated with A. actinomycetemcomitans LPS with or without the presence of S-nitroso acetyl-penicillamine (SNAP), a NO donor, and carboxy-PTIO, an NO scavenger. Culture supernatants were assessed for inducible nitric oxide synthase (iNOS) activity, specific IgG subclass levels, and both IFN-gamma and IL-4 levels. The results showed that in A. actinomycetemcomitans LPS-stimulated cells, SNAP enhances iNOS activity but inhibits the levels of specific IgG2a and IFN-gamma suggesting a Th1 response. The effect of SNAP on these immune parameters was ablated by carboxy-PTIO. These results suggest that exogenous NO may suppress the Th1-like immune response of A. actinomycetemcomitans LPS-stimulated murine spleen cells. Topics: Animals; Benzoates; Cells, Cultured; Female; Imidazoles; Immunoglobulin G; Immunologic Factors; Interferon-gamma; Interleukin-4; Leukocytes, Mononuclear; Lipopolysaccharides; Mice; Mice, Inbred BALB C; Nitric Oxide; Nitric Oxide Synthase Type II; Pasteurellaceae; Penicillamine; Spleen | 2009 |
Ischemia/reperfusion-induced death of cardiac myocytes: possible involvement of nitric oxide in the coordination of ATP supply and demand during ischemia.
Nitric oxide (NO) has been known to play various functional and pathological roles as an intracellular or intercellular messenger in the heart. In this study, we investigated whether NO produced during ischemia was involved in the coordination of ATP supply and demand, and also in protection from cell death using cultured cardiac myocytes. Unexpectedly, the survival rate of myocytes for 3 h simulated ischemia (SI) was increased as compared with that for 2 h SI at 24 h after reperfusion. The cellular ATP level at 3 h after the start of SI was increased compared with that at 2 h, and was almost the same as that before the start of SI. The cellular ATP level at 3 h SI was significantly reduced by either the inhibition of nitric oxide synthase (NOS) or scavenging of NO. Either the inhibition of NOS or the scavenging of NO during SI for 3 h also resulted in a significant decrease in the survival rate of myocytes. Immunocytochemical and Western blot analyses revealed that the expression of nNOS was most evident in cardiac myocytes, but no significant change was observed in the expression of all three NOS isoforms at 2 h SI and at 3 h SI. The fluorescent intensity of DAF-FM was significantly increased at 3 h SI as compared with that at 2 h SI, and the increase in DAF fluorescence during SI was almost completely suppressed by treatment with vinyl-L-NIO (L-VNIO), a potent specific inhibitor of nNOS. In addition, treatment with L-VNIO decreased the cellular ATP level and survival rate. This study suggested that the enhanced production of NO was critical in balancing ATP supply and demand during ischemia, and also in protecting cells from ischemia/reperfusion injury. Topics: Adenosine Triphosphate; Animals; Benzoates; Cell Death; Cells, Cultured; Enzyme Inhibitors; Fluoresceins; Fluorescent Dyes; Imidazoles; Myocardial Ischemia; Myocardial Reperfusion Injury; Myocytes, Cardiac; Nitric Oxide; Nitric Oxide Donors; Nitric Oxide Synthase; Nitric Oxide Synthase Type I; omega-N-Methylarginine; Ornithine; Penicillamine; Rats; Rats, Wistar | 2006 |
Mitochondrial involvement in nitric oxide-induced cellular death in cortical neurons in culture.
Nitric oxide (NO) is an unstable molecule with physiological and pathological properties. In brain, NO acts as a modulator of neurotransmission as well as a protector against neuronal death from several death stimuli. However, beside this protector effect, high NO concentrations produce neuronal death by a mechanism in which the caspase pathway is implicated. In this work, we demonstrate that in cortical neurons the NO toxicity is mediated by mitochondrial dysfunction. SNAP, an NO donor, induces apoptosis in these cells because it 1) increases the p53 and 2) induces cytochrome c release and activation of caspase-9 and caspase-3. SNAP also induces necrosis, through 1) breakdown of the mitochondrial membrane potential, 2) ATP decrease, 3) ROS formation, and 4) LDH and ATP release, indicative of oxidative stress and death by necrosis. To sum up, in cortical neurons, high NO concentrations produced cellular death by both an apoptotic and a necrotic mechanism in which the mitochondria are implicated. Topics: Adenosine Triphosphate; Anaphase-Promoting Complex-Cyclosome; Animals; Benzoates; Blotting, Western; Caspase 3; Caspase 9; Caspases; Cell Death; Cell Survival; Cells, Cultured; Cerebral Cortex; Cytochromes; Dose-Response Relationship, Drug; Drug Interactions; Embryo, Mammalian; Imidazoles; Intracellular Space; L-Lactate Dehydrogenase; Membrane Potentials; Mitochondria; Neuroglia; Neurons; Nitric Oxide; Nitric Oxide Donors; Penicillamine; Rats; Reactive Oxygen Species; Tumor Suppressor Protein p53; Ubiquitin-Protein Ligase Complexes | 2006 |
Exogenous nitric oxide inhibits IRS-1 expression in rat hepatocytes and skeletal myocytes.
Accumulative evidence has supported the role of nitric oxide (NO) in a variety of normal physiological functions as well as many pathological conditions. In this study, we examined the possible diabetogenicity of NO by measuring the expression of the insulin receptor substrate (IRS)-1 in rat hepatocytes and skeletal myocytes. IRS-1 is important in the insulin-mediated signal transduction pathway in both liver and skeletal muscle. Exogenous NO donated by S-nitroso-N-acetylpenicillamine (SNAP) and S-nitrosoglutathione (GSNO) resulted in significant reduction in levels of IRS-1 in both cells, when compared to the insulin-stimulated control (p<0.001). Reversal to near normal levels was achieved using the NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide (carboxy-PTIO). SNAP was the more potent drug, and the skeletal myocytes were the more sensitive cells to the inhibitory effects of NO released from the drugs. These results provide further evidence that exogenous NO is a potent modulator of insulin-mediated signal transduction and may play a significant role in the pathogenesis of type 2 diabetes mellitus. Topics: Animals; Benzoates; Gene Expression Regulation; Glutathione; Hepatocytes; Imidazoles; Immunoblotting; Insulin Receptor Substrate Proteins; Muscle Fibers, Skeletal; Nitric Oxide; Nitro Compounds; Penicillamine; Phosphoproteins; Rats; Signal Transduction; Time Factors | 2006 |
Nitric oxide production by the vacuolar-type (H+)-ATPase inhibitors bafilomycin A1 and concanamycin A and its possible role in apoptosis in RAW 264.7 cells.
In the mouse leukemic monocyte cell line RAW 264.7, the vacuolar-type (H(+))-ATPase (V-ATPase) inhibitors bafilomycin A1 and concanamycin A induced nitric oxide (NO) production through the expression of inducible nitric-oxide synthase mRNA and its protein and decreased cell growth and survival as determined by 3-(4,5-dimethyl(thiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Bafilomycin A1 and concanamycin A activated nuclear factor (NF)-kappaB and activator protein-1 and decreased the level of IkappaB-alpha and increased that of phosphorylated c-Jun N-terminal kinase (JNK). NO production induced by these V-ATPase inhibitors was suppressed by the NF-kappaB inhibitor Bay 11-7082 [(E)3-[(4-methylphenyl)sulfonyl])-2-propenenitrile] and the JNK inhibitor SP600125 [anthra[1,9-cd]pyrazol-6(2H)-one] in parallel with the partial alleviation of the V-ATPase inhibitor-induced decrease in MTT response. The Na(+),K(+)-ATPase inhibitor dibucaine and the F-ATPase inhibitor oligomycin did not induce NO production at which concentrations the MTT response was decreased. The NO donor S-nitroso-N-acetyl-dl-penicillamine further lowered the V-ATPase inhibitor-induced decrease in the MTT response, and the NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide, sodium salt (carboxy-PTIO) alleviated it partially. Mitochondrial depolarization, an index of apoptosis, was induced by bafilomycin A1 and concanamycin A. On treatment with the nitric-oxide synthase inhibitor N(G)-monomethyl-l-arginine acetate, the disruption of mitochondrial membrane potential induced by bafilomycin A1 and concanamycin A was alleviated partially in parallel with the decrease in NO production. Carboxy-PTIO also alleviated it partially. Our findings suggest that the V-ATPase inhibitors bafilomycin A1 and concanamycin A similarly induce NO production and the newly produced NO participates partially in the V-ATPase inhibitor-induced apoptosis in RAW 264.7 cells. Topics: Animals; Anthracenes; Apoptosis; Benzoates; Cell Line; Cell Proliferation; Dibucaine; Enzyme Inhibitors; Imidazoles; Macrolides; Mice; NF-kappa B; Nitric Oxide; Nitric Oxide Synthase Type II; Nitriles; Oligomycins; omega-N-Methylarginine; Penicillamine; Phosphorylation; RNA, Messenger; Sulfones; Thapsigargin; Transcription Factor AP-1; Vacuolar Proton-Translocating ATPases | 2006 |
Nitric oxide donors can enhance the intestinal transport and absorption of insulin and [Asu(1,7)]-eel calcitonin in rats.
The characteristics of three NO donors, 3-(2-hydroxy-1-(1-methylethyl)-2-nitrosohydrazino)-1-propanamine (NOC5), N-ethyl-2-(1-ethyl-2-hydroxy-2-nitrosohydrazino)-ethanamine (NOC12) and S-nitroso-N-acetyl-DL-penicillamine (SNAP) as absorption enhancers for peptide drugs were examined in rats using a modified Ussing chamber method and an in situ closed loop method. Insulin and [Asu(1,7)]-eel calcitonin (ECT) were used as a model drug to investigate the effectiveness of the tested enhancers. The NO donors significantly increased the in vitro permeability of insulin across all intestinal membranes. In general, the absorption enhancement effects of these NO donors were greater in the colon than those in the jejunum and ileum. Of these NO donors, SNAP was the most effective enhancer. Their effects were concentration-dependent over the range of 0.01 to 0.1 mM. However, 0.1 mM NO donors had almost the same effects as those at 1 mM concentration. The absorption-enhancing effects of the three NO donors were inhibited by the co-administration of 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazole-1-oxyl 3-oxide, sodium salt (carboxy-PTIO), an NO scavenger, suggesting that NO might be responsible for the efficacy of NO donors. In the in situ closed loop experiments, the three enhancers significantly improved the pharmacological availability % (PA%) of insulin in the small and large intestine. Similar results were also obtained when NO donors were added to ECT solution by an in situ closed loop method. These results suggest that NO donors possess excellent effectiveness for the use as absorption enhancers of peptide drugs and they are very effective at lower concentrations compared to the conventional enhancers. Topics: Animals; Benzoates; Calcitonin; Drug Stability; Imidazoles; Insulin; Intestinal Absorption; Male; Nitric Oxide Donors; Penicillamine; Rats; Rats, Wistar | 2005 |
Metamodulation of a spinal locomotor network by nitric oxide.
Flexibility in the output of spinal networks can be accomplished by the actions of neuromodulators; however, little is known about how the process of neuromodulation itself may be modulated. Here we investigate the potential "meta"-modulatory hierarchy between nitric oxide (NO) and noradrenaline (NA) in Xenopus laevis tadpoles. NO and NA have similar effects on fictive swimming; both potentiate glycinergic inhibition to slow swimming frequency and GABAergic inhibition to reduce episode durations. In addition, both modulators have direct effects on the membrane properties of motor neurons. Here we report that antagonism of noradrenergic pathways with phentolamine dramatically influences the effect of the NO donor S-nitroso-N-acetylpenicillamine (SNAP) on swimming frequency, but not its effect on episode durations. In contrast, scavenging extracellular NO with 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (PTIO) does not influence any of the effects of NA on fictive swimming. These data place NO above NA in the metamodulatory hierarchy, strongly suggesting that NO works via a noradrenergic pathway to control glycine release but directly promotes GABA release. We confirmed this possibility using intracellular recordings from motor neurons. In support of a natural role for NO in the Xenopus locomotor network, PTIO not only antagonized all of the effects of SNAP on swimming but also, when applied on its own, modulated both swimming frequency and episode durations in addition to the underlying glycinergic and GABAergic pathways. Collectively, our results illustrate that NO and NA have parallel effects on motor neuron membrane properties and GABAergic inhibition, but that NO serially metamodulates glycinergic inhibition via NA. Topics: Adrenergic alpha-Antagonists; Animals; Benzoates; Embryo, Nonmammalian; gamma-Aminobutyric Acid; Glycine; Imidazoles; Larva; Membrane Potentials; Neural Inhibition; Nitric Oxide; Nitric Oxide Donors; Norepinephrine; Penicillamine; Phentolamine; Spinal Cord; Swimming; Synapses; Time Factors; Xenopus laevis | 2004 |
Effect of SNI-2011 on amylase secretion from parotid tissue in rats and in neuronal nitric oxide synthase knockout mice.
The effect of (+/-)cis-2-methylspilo(1,3-oxathiolane-5,3')quinuclidine (SNI-2011) on the secretory pathway of amylase in parotid tissues was investigated. SNI-2011-induced exocytosis was inhibited by a cell-permeable Ca(2+) chelator or inhibitors of calmodulin kinase II, neuronal nitric oxide synthase (nNOS), soluble guanyl cyclase, cyclic GMP-dependent protein kinase (PKG), and myosin light chain kinase, suggesting that these enzymes were coupled with the exocytosis. Stimulation with SNI-2011 of isolated rat parotid acinar cells loaded with 4,5-diaminofluorescein/diacetate (DAF-2/DA) induced a fast increase in DAF fluorescence corresponding to an increase in the NO production. SNI-2011-induced amylase secretion from parotid tissues in nNOS knockout mice has not been observed yet in spite of the expression of muscarinic M(3) receptors and the maintenance of secretory response to isoproterenol in the tissues. These results indicate the implication of the activation of Ca(2+)- and calmodulin-dependent enzymes and NOS-PKG signaling pathway in SNI-2011-induced amylase secretion from parotid acinar cells. Topics: Alkaloids; Amylases; Animals; Azepines; Benzoates; Benzylamines; Calcium; Calcium Channel Blockers; Calcium-Calmodulin-Dependent Protein Kinase Type 2; Calcium-Calmodulin-Dependent Protein Kinases; Carbachol; Carbazoles; Chelating Agents; Cyclic GMP-Dependent Protein Kinases; Dose-Response Relationship, Drug; Egtazic Acid; Enzyme Activation; Enzyme Inhibitors; Estrenes; Gallic Acid; Genotype; Guanylate Cyclase; Imidazoles; In Vitro Techniques; Indoles; Male; Mice; Mice, Knockout; Molsidomine; Muscarinic Agonists; Myosin-Light-Chain Kinase; NG-Nitroarginine Methyl Ester; Nitric Oxide Donors; Nitric Oxide Synthase; Nitric Oxide Synthase Type I; Oxadiazoles; Parotid Gland; Penicillamine; Phosphodiesterase Inhibitors; Pilocarpine; Protein Kinase Inhibitors; Pyrroles; Pyrrolidinones; Quinoxalines; Quinuclidines; Rats; Rats, Wistar; Sulfonamides; Thiophenes; Type C Phospholipases | 2003 |
Nitric oxide acts as an antioxidant and delays programmed cell death in barley aleurone layers.
Nitric oxide (NO) is a freely diffusible, gaseous free radical and an important signaling molecule in animals. In plants, NO influences aspects of growth and development, and can affect plant responses to stress. In some cases, the effects of NO are the result of its interaction with reactive oxygen species (ROS). These interactions can be cytotoxic or protective. Because gibberellin (GA)-induced programmed cell death (PCD) in barley (Hordeum vulgare cv Himalaya) aleurone layers is mediated by ROS, we examined the effects of NO donors on PCD and ROS-metabolizing enzymes in this system. NO donors delay PCD in layers treated with GA, but do not inhibit metabolism in general, or the GA-induced synthesis and secretion of alpha-amylase. alpha-Amylase secretion is stimulated slightly by NO donors. The effects of NO donors are specific for NO, because they can be blocked completely by the NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide. The antioxidant butylated hydroxy toluene also slowed PCD, and these data support our hypothesis that NO is a protective antioxidant in aleurone cells. The amounts of CAT and SOD, two enzymes that metabolize ROS, are greatly reduced in aleurone layers treated with GA. Treatment with GA in the presence of NO donors delays the loss of CAT and SOD. We speculate that NO may be an endogenous modulator of PCD in barley aleurone cells. Topics: Abscisic Acid; alpha-Amylases; Antioxidants; Apoptosis; Benzoates; Butylated Hydroxytoluene; Catalase; Cell Survival; Fluorescent Dyes; Gene Expression Regulation, Enzymologic; Gene Expression Regulation, Plant; Gibberellins; Hordeum; Imidazoles; Nitric Oxide; Nitric Oxide Donors; Nitroprusside; Oxygen Consumption; Penicillamine; Protoplasts; Reactive Oxygen Species; RNA, Messenger; Seeds; Superoxide Dismutase | 2002 |
Differential cardiovascular responses to blockade of nNOS or iNOS in rostral ventrolateral medulla of the rat.
We investigated the contribution of neuronal or inducible nitric oxide synthase (nNOS or iNOS) at the rostral ventrolateral medulla (RVLM) to central cardiovascular regulation by endogenous nitric oxide (NO), using Sprague-Dawley rats anaesthetized and maintained with propofol. Microinjection bilaterally into the RVLM of a NO trapping agent, carboxy-2-phenyl-4,4,5,5-tetramethylimidazoline-l-oxy-l-3-oxide (10, 50 or 100 nmoles) resulted in significant hypotension and bradycardia. Similar application of a selective antagonist of nNOS, 7-nitroindazole (1, 2.5 or 5 pmoles), or selective antagonists of iNOS, aminoguanidine (125, 250 or 500 pmoles), N(6)-(l-iminoethyl)-L-lysine (250 pmoles) or S-methylisothiourea (250 pmoles), induced respectively a reduction or an enhancement in systemic arterial pressure, heart rate and power density of the vasomotor components in the spectrum of arterial blood pressure signals, the experimental index for sympathetic neurogenic vasomotor tone. Both hypotension and bradycardia induced by the NO precursor, L-arginine (100 nmoles), were significantly blunted when aminoguanidine (250 pmoles) was co-microinjected bilaterally into the RVLM. On the other hand, co-administered 7-nitroindazole (2.5 pmoles) was ineffective. Whereas low doses of S-nitro-N-acetylpenicillamine (0.25 or 0.5 nmoles) elicited hypertension and tachycardia, high doses of this non-nitrate NO donor (5 nmoles) induced hypotension and bradycardia. Reverse transcription - polymerase chain reaction analysis revealed that both iNOS and nNOS mRNA were expressed in the ventrolateral medulla. We conclude that the prevalence of nNOS over iNOS activity at the RVLM and the associated dominance of sympathoexcitation over sympathoinhibition may underlie the maintenance of sympathetic vasomotor outflow and stable systemic arterial pressure by the endogenous NO. Topics: Animals; Benzoates; Blood Pressure; Dose-Response Relationship, Drug; Enzyme Inhibitors; Heart Rate; Imidazoles; Indazoles; Male; Medulla Oblongata; Microinjections; Neurons; Nitric Oxide; Nitric Oxide Synthase; Nitric Oxide Synthase Type I; Nitric Oxide Synthase Type II; Penicillamine; Rats; Rats, Sprague-Dawley; RNA, Messenger | 2001 |
Exogenous nitric oxide inhibits apoptosis in guinea pig gastric mucous cells.
Increased nitric oxide (NO) synthase activity and enhanced apoptosis are features of gastric mucosa infected with Helicobacter pylori and a causative relation has been suggested. However, although NO can promote apoptosis, its actions vary with cell type.. To determine whether exogenous NO, derived from an NO donor, might promote or counteract apoptosis in gastric mucous epithelial cells.. Primary cultures of guinea pig gastric mucosal cells were exposed to the NO donor S-nitroso-N-acetyl-penicillamine (SNAP) for 24 hours. Apoptosis was detected from nuclear staining with Hoechst 33258, in situ nick end labelling of DNA, and the presence of DNA "ladders" in cell extracts. Cyclic GMP content and caspase activity were determined by immunoassay and fluorimetric assay respectively.. SNAP 1 mM did not alter the small proportion of cells on the culture plate (3-6%) which exhibited features of apoptosis. However, SNAP produced an inhibition of apoptosis, and of caspase 3 like activity, when enhanced by 25 microM N-hexanoyl-D-sphingosine (C(6)-ceramide), or by detachment of cells from the culture plate. The guanylate cyclase inhibitor, 1H-1, 2, 4-oxadiazole-4, 3-a-quinoxaline-1-one (ODQ), prevented the stimulation of cyclic GMP by SNAP, but not the anti- apoptotic effects of the NO donor. The cyclic GMP analogues 8-bromo-cyclic GMP and 8-(4-chlorophenylthio) guanosine-3',5'- cyclic monophosphate did not significantly inhibit apoptosis in the mucosal cells.. Exogenous NO inhibited apoptosis in guinea pig gastric mucous cells by a mechanism which did not involve elevation of cyclic GMP. NO, if produced from NO synthase during infection with H pylori, may therefore counter the proapoptotic effects of this pathogen. Topics: Animals; Apoptosis; Benzoates; Caspase 1; Cells, Cultured; Ceramides; Cyclic AMP; Depression, Chemical; DNA Fragmentation; Gastric Mucosa; Guinea Pigs; Imidazoles; In Situ Nick-End Labeling; Male; Nitric Oxide; Nitric Oxide Donors; Penicillamine | 2000 |
Nitric oxide provokes tumor necrosis factor-alpha expression in adult feline myocardium through a cGMP-dependent pathway.
The mechanism(s) responsible for the persistent coexpression of tumor necrosis factor-alpha (TNF-alpha) and nitric oxide (NO) in the failing heart is unknown.. To determine whether NO was sufficient to provoke TNF-alpha biosynthesis, we examined the effects of an NO donor, S-nitroso-N-acetyl penicillamine (SNAP), in buffer-perfused Langendorff hearts. SNAP (1 micromol/L) treatment resulted in a time- and dose-dependent increase in myocardial TNF-alpha mRNA and protein biosynthesis in adult cat hearts. The effects of SNAP were completely abrogated by a NO quenching agent, 2-(4-carboxyphenyl)-4, 4,5,5-tetramethylimidazoline-1-oxyl 3-oxide (C-PTIO), and mimicked by sodium nitroprusside. Electrophoretic mobility shift assays demonstrated that SNAP treatment led to the rapid induction of nuclear factor kappa-beta (NF-kappaB) but not AP-1. The importance of the cGMP pathway in terms of mediating NO-induced TNF-alpha biosynthesis was shown by studies that demonstrated that 8-bromo-cGMP mimicked the effects of SNAP and that the effects of SNAP could be completely abrogated using a cGMP antagonist, 1H-(1,2, 4)oxadiazolo(4,3-a)quinoxalin-1-one (ODQ), or protein kinase G antagonist (Rp-8-Br-cGMPS). SNAP and 8-Br-cGMP were both sufficient to lead to the site-specific phosphorylation (serine 32) and degradation of IkappaBalpha in isolated cardiac myocytes. Finally, protein kinase G was sufficient to directly phosphorylate IkappaBalpha on serine 32, a critical step in the activation of NF-kappaB.. These studies show that NO provokes TNF-alpha biosynthesis through a cGMP-dependent pathway, which suggests that the coincident expression of TNF-alpha and NO may foster self-sustaining positive autocrine/paracrine feedback inflammatory circuits within the failing heart. Topics: Animals; Benzoates; Cats; Cyclic GMP; Cyclic GMP-Dependent Protein Kinases; DNA-Binding Proteins; Electrophoresis; I-kappa B Proteins; Imidazoles; In Vitro Techniques; Myocardium; NF-kappa B; NF-KappaB Inhibitor alpha; Nitric Oxide; Nitric Oxide Donors; Nitroprusside; Oxadiazoles; Penicillamine; Phosphorylation; Protein Kinases; Quinoxalines; RNA, Messenger; Thionucleotides; Tumor Necrosis Factor-alpha | 2000 |
Nitric oxide donors enhance rectal absorption of macromolecules in rabbits.
The objective of this investigation is to evaluate the potential of nitric oxide (NO) donors as a new class of absorption enhancers which may act on intestinal epithelial cells through epithelial actions of the chemical mediator, NO.. Suppositories containing NO donors and insulin were administered into the rabbit rectum. After administration of the suppository, blood samples were collected from the auricular vein. The plasma insulin and glucose concentrations were determined.. The NO donor S-nitroso-N-acetyl-DL-penicillamine (SNAP, 4 mg) induced a significant increase in the rate of insulin absorption from the rectum. Administration of a suppository containing SNAP without insulin affected neither the plasma insulin nor the plasma glucose concentration. Other NO donors, NOR1 and NOR4, also induced increases in the insulin absorption. The absorption enhancement effect of SNAP was inhibited by coadministration of the NO scavenger carboxy-PTIO. SNAP also enhanced FITC-dextran (MW 4,000) absorption. Little cytotoxicity of SNAP (3.0 mg/ml) as assessed in terms of the rate of lactate dehydrogenase (LDH) release from Caco-2 cells was detected for 2 h of incubation.. These findings suggest that NO enhanced macromolecular absorption from the rectum without mucosal cell damage, and that NO donors can act as potent absorption enhancers. Topics: Animals; Area Under Curve; Benzoates; Blood Glucose; Dextrans; Fluorescein-5-isothiocyanate; Imidazoles; Insulin; Intestinal Absorption; Male; Nitric Oxide; Penicillamine; Rabbits | 1998 |