s-nitro-n-acetylpenicillamine has been researched along with 1-1-diethyl-2-hydroxy-2-nitrosohydrazine* in 9 studies
9 other study(ies) available for s-nitro-n-acetylpenicillamine and 1-1-diethyl-2-hydroxy-2-nitrosohydrazine
Article | Year |
---|---|
Expression of cardiac function genes in adult stem cells is increased by treatment with nitric oxide agents.
Mesenchymal stem cells (MSCs) have received special attention for cardiomyoplasty because several studies have shown that they differentiate into cardiomyocytes both in vitro and in vivo. Nitric oxide (NO) is a free radical signaling molecule that regulates several differentiation processes including cardiomyogenesis. Here, we report an investigation of the effects of two NO agents (SNAP and DEA/NO), able to activate both cGMP-dependent and -independent pathways, on the cardiomyogenic potential of bone marrow-derived mesenchymal stem cells (BM-MSCs) and adipose tissue-derived stem cells (ADSCs). The cells were isolated, cultured and treated with NO agents. Cardiac- and muscle-specific gene expression was analyzed by indirect immunofluorescence, flow cytometry, RT-PCR and real-time PCR. We found that untreated (control) ADSCs and BM-MSCs expressed some muscle markers and NO-derived intermediates induce an increased expression of some cardiac function genes in BM-MSCs and ADSCs. Moreover, NO agents considerably increased the pro-angiogenic potential mostly of BM-MSCs as determined by VEGF mRNA levels. Topics: Adult; Adult Stem Cells; Aged; Antigens, CD; Cardiomyoplasty; Cell Differentiation; Cells, Cultured; Connexin 43; Gene Expression; Genetic Markers; Heart; Humans; Hydrazines; Mesenchymal Stem Cells; Middle Aged; Multipotent Stem Cells; Muscle Proteins; Myocytes, Cardiac; Nitric Oxide; Nitric Oxide Donors; Penicillamine; Vascular Endothelial Growth Factor A | 2009 |
The effect of guanylate cyclase inhibitors on non-adrenergic and non-cholinergic neurogenic relaxations of the South American opossum lower esophageal sphincter.
South American (SA) opossum lower esophageal sphincter (LES) circular smooth muscle relaxes by activation of enteric nerves elicited by EFS (electrical field stimulation, 0.5 ms, 48 V, 0.5-8 Hz for 10 s). The identity of the mediator released and the cellular mechanism, however, remain to be fully elucidated. The purpose of this study was to determine the effect of the enzyme soluble guanylate cyclase (cGC) inhibitors, cystamine (100 microM), methylene blue (30 microM), LY 83583 (6-anilino-5,8 quinoledione, 10 microM) and ODQ (H-[1,2,4]oxadiazolo[4,3]quinoxalin-1-one, 1 microM) on the relaxations induced by EFS and by exogenous NO (nitric oxide, 0.5 mM) or NO-donors on SA opossum LES smooth muscle strips. EFS caused frequency-dependent relaxations, which were inhibited by NO-synthase inhibitors and abolished by tetrodotoxin. Cystamine did not affect relaxations caused by EFS and NO or NO-donor. Methylene blue also failed to affect EFS-caused relaxations, although it was capable of inhibiting relaxation induced by NO. LY 83583 inhibited relaxations induced by NO, but did not affect those induced by EFS or by SNAP and HXA. ODQ abolished relaxations caused by EFS at lower frequencies and by HXA (hydroxylamine, 10 microM) and SNAP (S-nitroso-N-acetyl penicillamine, 10 microM). Relaxations at higher frequencies of EFS and induced by SNP (sodium nitroprusside, 30 microM) and NO were only reduced by ODQ. These findings indicate that activation of the cGC can be involved in relaxations induced by EFS at lower frequencies, but other mechanisms can be involved at higher frequencies of EFS and caused by SNP or NO. Topics: Aminoquinolines; Animals; Cyclic GMP; Cysteamine; Electric Stimulation; Esophageal Sphincter, Lower; Female; Guanylate Cyclase; Hydrazines; Hydroxylamine; In Vitro Techniques; Male; Methylene Blue; Muscle Relaxation; Nitric Oxide; Nitric Oxide Donors; Nitroprusside; Opossums; Oxadiazoles; Penicillamine; Receptors, Cytoplasmic and Nuclear; Soluble Guanylyl Cyclase | 2008 |
Rhythmic activity from transverse brainstem slice of neonatal rat is modulated by nitric oxide.
We investigated the role of nitric oxide (NO) in the modulation of respiratory-like activity recorded from hypoglossal rootlets in brainstem slices of neonatal rats (P0-P8). Sodium nitroprusside (SNP), S-Nitroso-N-acetyl-D,L-penicillamine (SNAP) and diethylamine-NO (DEA-NO), three NO-donors, reversibly increased hypoglossal burst amplitude with inconsistent effects on burst frequency. Similar effects were also obtained with the endogenous substrate of nitric oxide synthase (NOS), L-arginine, whereas the inactive enantiomer D-arginine had no effect. The NO-trap agent methylene blue significantly depressed both the amplitude and frequency of hypoglossal activity while hemoglobin depressed only the amplitude. Furthermore, the addition of NO-trap agents significantly attenuated the excitatory response to SNP. Inhibiting NOS with either N(omega)-Nitro-L-Arginine (L-NNA) or 7-Nitroindazole (7-NI), decreased the amplitude of hypoglossal activity with no effects on frequency. Histochemical analysis of NADPH-diaphorase activity, a marker for NOS, was performed on slices not treated pharmacologically and in brainstem sections of newborn rats, perfused in situ. Comparison between in vitro and in vivo conditions indicated that NOS activity was maintained in slice preparations. Neurons in the ambiguus and hypoglossal nuclei (dorsal division) exhibited a granular staining, suggesting the presence of NADPHd-positive terminals. Neurons with cytoplasmic staining were identified in regions connected to the hypoglossal nucleus (nucleus tractus solitarius, paramedian and gigantocellular reticular nuclei). These neurons might be involved in nitrergic control of hypoglossal activity. Both pharmacological and histochemical data suggest that endogenous NO may reinforce the output activity of the medullary respiratory network. Topics: Action Potentials; Animals; Animals, Newborn; Brain Stem; Dose-Response Relationship, Drug; Enzyme Inhibitors; Histocytochemistry; Hydrazines; In Vitro Techniques; NADP; Nitric Oxide; Nitric Oxide Donors; Nitric Oxide Synthase; Nitroarginine; Nitrogen Oxides; Nitroprusside; Penicillamine; Rats | 2002 |
Nitric oxide does not modulate the hyperpolarization-activated current, I(f), in ventricular myocytes from spontaneously hypertensive rats.
: In sinoatrial (SA) node cells, nitric oxide (NO) exerts a dual effect on the hyperpolarization-activated current, I(f), i.e. in basal conditions NO enhances I(f) whereas in the presence of beta-adrenergic stimulation it decreases it. Recent studies have shown that I(f) is present in ventricular myocytes from hypertrophied or failing hearts where it may promote abnormal automaticity. Since these pathological conditions are associated with increased sympathetic tone and upregulation of myocardial NO production, we set out to investigate whether I(f) is similarly modulated by NO in hypertrophied ventricular myocytes.. Left ventricular myocytes were isolated from 18-20-month-old spontaneously hypertensive rats (SHRs). Membrane current was measured under whole-cell or amphotericin-perforated patch-clamp conditions, at 35 degrees C.. Application of diethylamine-NO (DEA-NO, 1-100 microM) did not alter the amplitude or voltage dependence of activation of I(f) under basal conditions (half-activation voltage, V(h): control -82.9+/-2.6, DEA-NO -84.0+/-2.6 mV). Similarly, I(f) was not affected by the inhibition of endogenous NO production (L-NMMA, 500 microM) or guanylate cyclase (ODQ, 10 microM). Forskolin (10 microM) or isoprenaline (100 nM) elicited a positive shift in V(h) but subsequent application of DEA-NO did not further affect the properties of I(f).. Our results show that, unlike in SA node cells, in SHR ventricular myocytes basal and adrenergically stimulated I(f) is not modulated by exogenous NO or by constitutive NO or cGMP production. Topics: Adenylyl Cyclases; Adrenergic beta-Agonists; Amphotericin B; Analysis of Variance; Animals; Arrhythmias, Cardiac; Cardiomegaly; Colforsin; Enzyme Inhibitors; Guanylate Cyclase; Hydrazines; Isoproterenol; Male; Membrane Potentials; Nitric Oxide Donors; Nitric Oxide Synthase; Nitrogen Oxides; omega-N-Methylarginine; Oxadiazoles; Patch-Clamp Techniques; Penicillamine; Pyridines; Rats; Rats, Inbred SHR; Sinoatrial Node | 2001 |
Glutathione depletion switches nitric oxide neurotrophic effects to cell death in midbrain cultures: implications for Parkinson's disease.
Nitric oxide (NO) exerts neurotrophic and neurotoxic effects on dopamine (DA) function in primary midbrain cultures. We investigate herein the role of glutathione (GSH) homeostasis in the neurotrophic effects of NO. Fetal midbrain cultures were pretreated with GSH synthesis inhibitor, L-buthionine-(S,R)-sulfoximine (BSO), 24 h before the addition of NO donors (diethylamine/nitric oxide-complexed sodium and S-nitroso-N-acetylpenicillamine) at doses tested previously as neurotrophic. Under these conditions, the neurotrophic effects of NO disappeared and turned on highly toxic. Reduction of GSH levels to 50% of baseline induced cell death in response to neurotrophic doses of NO. Soluble guanylate cyclase (sGC) and cyclic GMP-dependent protein kinase (PKG) inhibitors protected from cell death for up to 10 h after NO addition; the antioxidant ascorbic acid also protected from cell death but its efficacy decreased when it was added after NO treatment (40% protection 2 h after NO addition). The pattern of cell death was characterized by an increase in chromatin condensed cells with no DNA fragmentation and with breakdown of plasmatic membrane. The inhibition of RNA and protein synthesis and of caspase activity also protected from cell death. This study shows that alterations in GSH levels change the neurotrophic effects of NO in midbrain cultures into neurotoxic. Under these conditions, NO triggers a programmed cell death with markers of both apoptosis and necrosis characterized by an early step of free radicals production followed by a late requirement for signalling on the sGC/cGMP/PKG pathway. Topics: Alkaloids; Aminoquinolines; Animals; Antioxidants; Apoptosis; Ascorbic Acid; Buthionine Sulfoximine; Carbazoles; Cell Division; Cells, Cultured; Cyclic GMP-Dependent Protein Kinases; Dopamine; Enzyme Inhibitors; Free Radicals; Glutathione; Glutathione Synthase; Guanylate Cyclase; Homeostasis; Hydrazines; Indoles; Mesencephalon; Methylene Blue; Nerve Tissue Proteins; Neurons; Nitric Oxide; Nitric Oxide Donors; Nitrogen Oxides; Nucleic Acid Synthesis Inhibitors; Parkinson Disease; Penicillamine; Protein Synthesis Inhibitors; Rats; Rats, Sprague-Dawley; Tyrosine 3-Monooxygenase | 2001 |
Differing effects of copper,zinc superoxide dismutase overexpression on neurotoxicity elicited by nitric oxide, reactive oxygen species, and excitotoxins.
Overexpression of Cu,Zn superoxide dismutase (SOD1) reduces ischemic injury in some stroke models but exacerbates injury in a neonatal stroke model and in other settings. The current study used a SOD1 transgenic (SOD1-Tg) murine cortical culture system, derived from the same mouse strain previously used for the stroke models, to identify conditions that determine whether SOD1 overexpression in neurons is protective or detrimental. The nitric oxide (NO) donors S-nitroso-N-acetylpenicillamine, spermine-NONOate, and diethylamine-NONOate produced less death in SOD1-Tg neurons than in wild-type neurons (p < 0.01). Also, NO produced markedly less 3-nitrotyosine in SOD1-Tg cells. In contrast, the superoxide generator menadione produced significantly greater death and nearly twice as much 2'7'-dichlorofluorescein fluorescence in SOD1-Tg neurons than in wild-type neurons, suggesting increased peroxide formation in the SOD1-Tg cells. No significant difference was observed in the vulnerability of the two cell types to H2O2, the product of the SOD reaction. Overexpression of SOD1 also had no effect on neuronal vulnerability to glutamate, N-methyl-D-aspartate, or kainate. These observations suggest that SOD1 overexpression can reduce neuronal death under conditions where peroxynitrite formation is a significant factor, but may exacerbate neuronal death under conditions of rapid intracellular superoxide formation or impaired H2O2 disposal. Topics: Animals; Astrocytes; Cell Death; Cells, Cultured; Cerebral Cortex; Excitatory Amino Acid Agonists; Gene Expression Regulation, Enzymologic; Glutamic Acid; Humans; Hydrazines; Kainic Acid; Mice; Mice, Transgenic; N-Methylaspartate; Neurons; Neurotoxins; Nitric Oxide; Nitric Oxide Donors; Nitrogen Oxides; Penicillamine; Reactive Oxygen Species; Spermine; Superoxide Dismutase; Tyrosine; Vitamin K | 2000 |
Effects of nitric oxide release in an area of the chick forebrain which is essential for early learning.
Extracellular recording techniques were used to study the effects of the nitric oxide releasing agents diethylamine-NO (DEA-NO) and S-nitroso-N-acetyl-penicillamine (SNAP) on synaptic transmission in the intermediate and medial part of the hyperstriatum ventrale (IMHV), a part of the domestic chick forebrain that is essential for some forms of early learning. The field response evoked by local electrical stimulation was recorded in the IMHV in an in vitro slice preparation. DEA-NO (100-200 mgr) significantly depressed the field response in a concentration dependent and reversible manner. However, the depression produced by perfusion with 400 mgr DEA-NO, was not reversed following washout of the drug. With 400 mgr DEA-NO, NO reaches a maximum concentration of 10 mgr at 2 min of perfusion, and then declines slowly. SNAP (400 mgr) produced an effect similar to 400 mgr DEA-NO. Neither the immediate nor the longer-term depressive effect of NO is mediated by activation of guanylyl cyclase because in the presence of both low and high doses of ODQ, a potent and selective inhibitor of NO-stimulated guanylyl cyclase, NO produced the same depression of the field response. There is evidence however that the IMHV possesses c-GMP responsive elements since direct perfusion of 8-Br-cGMP (1 mM) produced a long-term but not an immediate depression. The long-term depression produced by 400 mgr DEA-NO was eliminated in the presence of either a selective adenosine A(1) receptor antagonist or an ADP-ribosyltransferase inhibitor. It was also possible to prevent the long-term effect in the presence of tetraethyl ammonium a K(+)-channel blocker. These results suggest that the NO may be acting presynaptically in a synergistic fashion with the adenosine A(1) receptor to depress transmitter release. Topics: Animals; Chickens; Conditioning, Psychological; Cyclic GMP; Evoked Potentials; Guanylate Cyclase; Hydrazines; Memory; Neuronal Plasticity; Neurons; Nitric Oxide; Nitric Oxide Donors; Nitrogen Oxides; Penicillamine; Poly(ADP-ribose) Polymerases; Potassium Channels; Prosencephalon; Receptors, Adrenergic, alpha-1; Synapses; Synaptic Transmission; Tetraethylammonium; Xanthines | 2000 |
The nitric oxide donors, SNAP and DEA/NO, exert a negative inotropic effect in rat cardiomyocytes which is independent of cyclic GMP elevation.
The role of guanosine 3',5'-cyclic monophosphate (cGMP) in the regulation of cardiac contractility remains controversial. The present study has examined the effects of high concentrations of the nitric oxide (NO) donors, S-nitroso-N-acetylpenicillamine (SNAP) and 1,1-diethyl-2-hydroxy-2-nitroso-hydrazine (DEA/NO), on cGMP levels and isoproterenol-induced increases in contractility in rat cardiomyocytes before and after selective inhibition of soluble guanylyl cyclase with 1 H -[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ). In control myocytes, 100 microm SNAP or 100 microm DEA/NO increased cGMP levels by more than 15-fold at 2 and 6 min and produced marked attenuations of isoproterenol-mediated increases in maximal cell shortening over the same time period. The NO donors had no significant effect on basal cell shortening (in the absence of isoproterenol). Pretreatment of myocytes with 25 microm ODQ for 30 min resulted in a complete blockade of the SNAP- or DEA/NO-induced increases in cGMP with no reversal of negative inotropy. ODQ did not affect basal contractility, basal cGMP levels or isoproterenol-induced increases in cell shortening. Furthermore, myocytes exposed to the cGMP analog, 8-bromo-cGMP (100 microm), did not exhibit significant differences in basal contractility or isoproterenol-induced increases in cell shortening. These results suggest that attenuation of cardiac contractility by NO donors in rat cardiomyocytes occurs by a mechanism independent of increases in cGMP levels. Topics: Animals; Cardiotonic Agents; Cyclic GMP; Enzyme Inhibitors; Guanylate Cyclase; Hydrazines; In Vitro Techniques; Isoproterenol; Male; Myocardial Contraction; Myocardium; Nitric Oxide Donors; Nitrogen Oxides; Oxadiazoles; Oxidation-Reduction; Penicillamine; Quinoxalines; Rats; Rats, Wistar | 1999 |
Comparative effects of several nitric oxide donors on intracellular cyclic GMP levels in bovine chromaffin cells: correlation with nitric oxide production.
1. Sodium nitroprusside, S-nitroso-N-acetyl-D,L-penicillamine, Spermine NONOate and DEA NONOate raised cyclic GMP levels in bovine chromaffin cells in a time and concentration dependent manner with different potencies, the most potent being DEA/NO with an EC50 value of 0.38 +/- 0.02 microM. 2. Measurements of NO released from these donors revealed that DEA/NO decomposed with a half-life (t1/2) of 3.9 +/- 0.2 min. The t1/2 for SPER/NO was 37 +/- 3 min. SNAP decomposed more slowly (t1/2 = 37 +/- 4 h) and after 60 min the amount of NO produced corresponded to less than 2% of the total SNAP present. The rate of NO production from SNAP was increased by the presence of glutathione. 3. For DEA/NO and SPER/NO there was a clear correlation between nitric oxide production and cyclic GMP increases. Their threshold concentrations were 0.05 microM and maximal effective concentration between 2.5 and 5 microM. 4. For SNAP, threshold activation was seen at 1 microM, whereas full activation required a higher concentration (500-750 microM). The dose-response for SNAP increases in cyclic GMP was shifted nearly two orders of magnitude lower in the presence of glutathione. At higher concentrations an inhibition of cyclic GMP accumulation was found. This effect was not observed with either the nitric oxide-deficient SNAP analogue or other NO donors. 5. Although NO-donors are likely to be valuable for studying NO functions, their effective concentrations and the amount of NO released by them are very different and should be assessed in each system to ensure that physiological concentrations of NO are used. Topics: Animals; Cattle; Cells, Cultured; Chromaffin Cells; Cyclic GMP; Hydrazines; Intracellular Fluid; Kinetics; Nitric Oxide; Nitric Oxide Donors; Nitrogen Oxides; Nitroprusside; Penicillamine; Spermine | 1999 |