s-145 has been researched along with lysophosphatidylethanolamine* in 1 studies
1 other study(ies) available for s-145 and lysophosphatidylethanolamine
Article | Year |
---|---|
The cleavage of plasmenylethanolamine by phospholipase A2 appears to be mediated by the low affinity binding site of the TxA2/PGH2 receptor in U46619-stimulated human platelets.
Two TxA2/PGH2 receptor binding sites linked to different effector systems have recently been identified. Since plasmenylethanolamine represents the major phospholipid reservoir of arachidonic acid (AA) in resting human platelets, we assessed the differential role of these binding sites on plasmenylethanolamine hydrolysis by phospholipase A2 activity upon platelet activation by determining the generation of the corresponding [3H]lysoplasmenylethanolamine. Ethanolamine-containing phospholipids in platelets were pre-labelled with [3H]ethanolamine prior to platelet stimulation with U46619 (1 microM), a TxA2 mimetic, in the presence or absence of S-145, an antagonist of the low affinity TxA2/PGH2 receptor. Labelled platelets were also treated with the TxA2/PGH2 receptor antagonist, GR32191B, prior to washing (which blocks the low affinity site of the receptor) and subsequent stimulation. The above conditions provided for blockage of platelet aggregation but not shape change with U46619. The rise in [3H]lysoplasmenylethanolamine accumulation (170% of unstimulated controls) with U46619 as the agonist was inhibited in platelets pre-treated with S-145 and in platelets washed from GR32191B. Similar findings were also obtained for [3H]lysophosphatidylethanolamine accumulation. The present results indicate that the TxA2-dependent activation of plasmenylethanolamine cleavage by phospholipase A2 in intact human platelets is predominantly linked to the low affinity site of the TxA2/PGH2 receptor and may be important for platelet aggregation but not shape change. Topics: 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid; Binding Sites; Biphenyl Compounds; Blood Platelets; Bridged Bicyclo Compounds; Fatty Acids, Monounsaturated; Heptanoic Acids; Humans; Lysophospholipids; Phospholipases A; Phospholipases A2; Plasmalogens; Platelet Aggregation; Prostaglandin Endoperoxides, Synthetic; Receptors, Prostaglandin; Receptors, Thromboxane; Receptors, Thromboxane A2, Prostaglandin H2; Thromboxane A2 | 1994 |