ryanodine has been researched along with sphingosine-1-phosphate* in 3 studies
1 review(s) available for ryanodine and sphingosine-1-phosphate
Article | Year |
---|---|
The role of sphingolipids in the control of skeletal muscle function: a review.
In this review, potential roles for the endogenous sphingolipid, sphingosine, and its derivatives are described for muscle cells. Sphingosine modulates the function of important calcium channels in muscle, including the ryanodine receptor (RyR) calcium release channel of the sarcoplasmic reticulum (SR). Sphingosine blocks calcium release through the SR ryanodine receptor and reduces the activity of single skeletal muscle RyR channels reconstituted into planar lipid bilayers. Sphingosine-blocked calcium release is coincident with the inhibitory effects of sphingosine on [3H]ryanodine binding to the RyR. The sphingomyelin signal transduction pathway has also been identified in both skeletal and cardiac muscle. A neutral form of sphingomyelinase (nSMase) enzyme has been localized to the junctional transverse tubule membrane. The high turnover of the SMase is responsible for the production of ceramide and sphingosine. HPLC analyses indicate that significant resting levels of sphingosine are present in muscle tissue. A model of excitation-contraction coupling is presented suggesting a potential role for this endogenous sphingolipid in normal muscle function. Putative roles for sphingolipid mediators in skeletal muscle dysfunction are also discussed. We hypothesize that sphingosine plays important roles in malignant hyperthermia and during the development of muscle fatigue. Topics: Animals; Calcium; Calcium Channels; Ceramides; Ion Channel Gating; Ion Transport; Lysophospholipids; Malignant Hyperthermia; Models, Biological; Muscle Contraction; Muscle Fatigue; Muscle, Skeletal; Myocardium; Rats; Ryanodine; Ryanodine Receptor Calcium Release Channel; Second Messenger Systems; Sphingolipids; Sphingomyelin Phosphodiesterase; Sphingosine; Swine | 1999 |
2 other study(ies) available for ryanodine and sphingosine-1-phosphate
Article | Year |
---|---|
Lysophospholipids elevate [Ca2+]i and trigger exocytosis in bovine chromaffin cells.
Sphingosine 1-phosphate (S1P) and lysophosphatidic acid (LPA) are responsible for many physiological functions, including angiogenesis, neuronal survival, and immunity. However, little is known about their effects in modulating the stimulus-secretion coupling in bovine chromaffin cells. The result of PCR showed that at least two receptors (S1P(3) and LPA(1)) were expressed in bovine chromaffin cells. The elevation of [Ca(2+)](i) by S1P was fast and sustaining; but the elevation by LPA was slow and transient. The EC(50) for S1P and LPA in elevating the [Ca(2+)](i) were 0.55+/-0.01 and 0.54+/-0.40microM, respectively. This elevation could be totally blocked by thapsigargin, 2-APB, and U73122. Pertussis toxin pretreatment inhibited about half of the elevation in [Ca(2+)](i) suggesting the involvement of G(i) and other G-proteins. Repetitive [Ca(2+)](i) elevations elicited by S1P, but not LPA, were inhibited by ryanodine. S1P was more effective than LPA in triggering exocytosis as measured by the changes in membrane capacitance. The whole-cell Ca(2+) current was inhibited by both lysophospholipids but Na(+) current was inhibited by S1P only. These results suggest the differential effects of LPA and S1P in releasing Ca(2+) from the intracellular Ca(2+) stores and modulating the stimulus-secretion coupling in bovine chromaffin cells. Topics: Animals; Base Sequence; Calcium; Calcium Channel Blockers; Calcium Signaling; Catecholamines; Cattle; Cell Membrane; Cell Separation; Cells, Cultured; Chromaffin Cells; Dose-Response Relationship, Drug; Electrophysiology; Enzyme Inhibitors; Exocytosis; Inositol 1,4,5-Trisphosphate; Lysophospholipids; Molecular Sequence Data; Reverse Transcriptase Polymerase Chain Reaction; Ryanodine; Sodium Channel Blockers; Sphingosine; Thapsigargin | 2006 |
Inhibition of Ca2+ release channel (ryanodine receptor) activity by sphingolipid bases: mechanism of action.
Sphingosine inhibits the activity of the skeletal muscle Ca2+ release channel (ryanodine receptor) and is a noncompetitive inhibitor of [3H]ryanodine binding (Needleman et al., Am. J. Physiol. 272, C1465-1474, 1997). To determine the contribution of other sphingolipids to the regulation of ryanodine receptor activity, several sphingolipid bases were assessed for their ability to alter [3H]ryanodine binding to sarcoplasmic reticulum (SR) membranes and to modulate the activity of the Ca2+ release channel. Three lipids, N,N-dimethylsphingosine, dihydrosphingosine, and phytosphingosine, inhibited [3H]ryanodine binding to both skeletal and cardiac SR membranes. However, the potency of these three lipids and sphingosine was lower in rabbit cardiac membranes when compared to rabbit skeletal muscle membranes and when compared to sphingosine. Like sphingosine, the lipids inhibited [3H]ryanodine binding by greatly increasing the rate of dissociation of bound [3H]ryanodine from SR membranes, indicating that these three sphingolipid bases were noncompetitive inhibitors of [3H]ryanodine binding. These bases also decreased the activity of the Ca2+ release channel incorporated into planar lipid bilayers by stabilizing a long closed state. Sphingosine-1-PO4 and C6 to C18 ceramides of sphingosine had no significant effect on [3H]ryanodine binding to cardiac or skeletal muscle SR membranes. Saturation of the double bond at positions 4-5 decreased the ability of the sphingolipid bases to inhibit [3H]ryanodine binding 2-3 fold compared to sphingosine. In summary, our data indicate that other endogenous sphingolipid bases are capable of modulating the activity of the Ca2+ release channel and as a class possess a common mechanism of inhibition. Topics: Animals; Calcium Channel Blockers; In Vitro Techniques; Kinetics; Lipid Bilayers; Lysophospholipids; Muscle, Skeletal; Myocardium; Rabbits; Ryanodine; Ryanodine Receptor Calcium Release Channel; Sarcoplasmic Reticulum; Sphingolipids; Sphingosine | 2000 |