ryanodine has been researched along with lysophosphatidic-acid* in 2 studies
2 other study(ies) available for ryanodine and lysophosphatidic-acid
Article | Year |
---|---|
Lysophospholipids elevate [Ca2+]i and trigger exocytosis in bovine chromaffin cells.
Sphingosine 1-phosphate (S1P) and lysophosphatidic acid (LPA) are responsible for many physiological functions, including angiogenesis, neuronal survival, and immunity. However, little is known about their effects in modulating the stimulus-secretion coupling in bovine chromaffin cells. The result of PCR showed that at least two receptors (S1P(3) and LPA(1)) were expressed in bovine chromaffin cells. The elevation of [Ca(2+)](i) by S1P was fast and sustaining; but the elevation by LPA was slow and transient. The EC(50) for S1P and LPA in elevating the [Ca(2+)](i) were 0.55+/-0.01 and 0.54+/-0.40microM, respectively. This elevation could be totally blocked by thapsigargin, 2-APB, and U73122. Pertussis toxin pretreatment inhibited about half of the elevation in [Ca(2+)](i) suggesting the involvement of G(i) and other G-proteins. Repetitive [Ca(2+)](i) elevations elicited by S1P, but not LPA, were inhibited by ryanodine. S1P was more effective than LPA in triggering exocytosis as measured by the changes in membrane capacitance. The whole-cell Ca(2+) current was inhibited by both lysophospholipids but Na(+) current was inhibited by S1P only. These results suggest the differential effects of LPA and S1P in releasing Ca(2+) from the intracellular Ca(2+) stores and modulating the stimulus-secretion coupling in bovine chromaffin cells. Topics: Animals; Base Sequence; Calcium; Calcium Channel Blockers; Calcium Signaling; Catecholamines; Cattle; Cell Membrane; Cell Separation; Cells, Cultured; Chromaffin Cells; Dose-Response Relationship, Drug; Electrophysiology; Enzyme Inhibitors; Exocytosis; Inositol 1,4,5-Trisphosphate; Lysophospholipids; Molecular Sequence Data; Reverse Transcriptase Polymerase Chain Reaction; Ryanodine; Sodium Channel Blockers; Sphingosine; Thapsigargin | 2006 |
Evidence that IP3 and ryanodine-sensitive intra-cellular Ca2+ stores are not involved in acute hyposmotically-induced prolactin release in Tilapia.
Prolactin (PRL) cells from the euryhaline tilapia, Oreochromis mossambicus, behave like osmoreceptors by responding directly to reductions in medium osmolality with increased secretion of the osmoregulatory hormone PRL. Extracellular Ca(2+) is essential for the transduction of a hyposmotic stimulus into PRL release. In the current study, the presence and possible role of intracellular Ca(2+) stores during hyposmotic stimulation was investigated using pharmacological approaches. Changes in intracellular Ca(2+) concentration were measured with fura-2 in isolated PRL cells. Intracellular Ca(2+) stores were depleted in dispersed PRL cells with thapsigargin (1 microM) or cyclopiazonic acid (CPA, 10 microM). Pre-incubation with thapsigargin prevented the rise in [Ca(2+)](i) induced by lysophosphatidic acid (LPA, 1 microM), an activator of the IP(3) signalling cascade, but did not prevent the hyposmotically-induced rise in [Ca(2+)](i) in medium with normal [Ca(2+)] (2mM). Pre-treatment with CPA produced similar results. Prolactin release from dispersed cells followed a pattern that paralleled observed changes in [Ca(2+)](i). CPA inhibited LPA-induced prolactin release but not hyposmotically-induced release. Xestospongin C (1microM), an inhibitor of IP(3) receptors, had no effect on hyposmotically-induced PRL release. Pre-exposure to caffeine (10mM) or ryanodine (1microM) did not prevent a hyposmotically-induced rise in [Ca(2+)](i). Taken together these results indicate the presence of IP(3) and ryanodine-sensitive Ca(2+) stores in tilapia PRL cells. However, the rapid rise in intracellular [Ca(2+)] needed for acute PRL release in response to hyposmotic medium can occur independently of these intracellular Ca(2+) stores. Topics: Animals; Calcium; Cells, Cultured; Enzyme Inhibitors; Inositol Phosphates; Lysophospholipids; Osmosis; Osmotic Pressure; Pituitary Gland; Prolactin; Ryanodine; Signal Transduction; Tilapia | 2004 |