ryanodine has been researched along with inositol-1-4-bis(phosphate)* in 1 studies
1 other study(ies) available for ryanodine and inositol-1-4-bis(phosphate)
Article | Year |
---|---|
Proliferation-associated increase in sensitivity of mammary epithelial cells to inositol-1,4,5-trisphosphate.
Injection of D-myo-inositol-1,4,5-trisphosphate (IP3) was found to induce a transient increase of intracellular Ca2+ concentration in cancerous mammary cells (MMT060562) and in normal mammary cells treated with epidermal growth factor. Responses to injection of either D-myo-inositol-1,4-bisphosphate (IP2) or D-myo-inositol-1,3,4,5-tetrakisphosphate (IP4) were small or absent. Furthermore, normal mammary cells cultivated with low-protein serum replacement alone or in the presence of differentiation-inducing hormones (insulin + cortisol + prolactin) were less sensitive to IP3. Thapsigargin induced a transient increase of Ca2+ due to the release of Ca2+ from an intracellular pool. There was no difference in the peak heights of the thapsigargin-induced Ca2+ increase when mammary cells were cultivated in the presence or absence of epidermal growth factor or insulin + cortisol + prolactin. These findings suggest that the releasable intracellular Ca2+ pool remained unchanged whereas sensitivity to IP3 increases during the proliferation stage. Mechanical stimulus of a mammary cell induces an increase of intracellular Ca2+ in the stimulated cell. A certain stimulating factor is released from the mechanically stimulated cell into the extracellular space, and it induces an increase of Ca2+ in surrounding cells. In contrast, the IP3-induced Ca2+ increase in both cancerous and epidermal growth factor-treated normal mammary cells did not spread to adjacent cells. Therefore, increase of Ca2+ is not sufficient to account for the release of stimulating substances from mammary cells in the mechanically-induced spreading response. Topics: Animals; Caffeine; Calcium; Cell Division; Cells, Cultured; Drug Resistance; Epidermal Growth Factor; Epithelial Cells; Epithelium; Female; Inositol 1,4,5-Trisphosphate; Inositol Phosphates; Mammary Glands, Animal; Mammary Neoplasms, Experimental; Mice; Mice, Inbred ICR; Pregnancy; Ryanodine; Terpenes; Thapsigargin; Tumor Cells, Cultured | 1993 |