ryanodine has been researched along with coumarin* in 1 studies
1 other study(ies) available for ryanodine and coumarin
Article | Year |
---|---|
Ca2+-dependent dual functions of peptide C. The peptide corresponding to the Glu724-Pro760 region (the so-called determinant of excitation-contraction coupling) of the dihydropyridine receptor alpha 1 subunit II-III loop.
Both in vivo and in vitro studies suggest that the Glu(724)-Pro(760) (peptide C) region of the dihydropyridine receptor alpha1 II-III loop is important for excitation-contraction coupling, although its actual function has not yet been elucidated. According to our recent studies, peptide C inhibits Ca(2+) release induced by T-tubule depolarization or peptide A. Here we report that peptide C has Ca(2+)-dependent dual functions on the skeletal muscle ryanodine receptor. Thus, at above-threshold [Ca(2+)]s (> or =0.1 microm) peptide C blocked peptide A-induced activation of the ryanodine receptor (ryanodine binding and Ca(2+) release); peptide C also blocked T-tubule depolarization-induced Ca(2+) release. However, at sub-threshold [Ca(2+)]s (<0.1 microm), peptide C enhanced ryanodine binding and induced Ca(2+) release. If peptide A was present, together with peptide C, both peptides produced additive activation effects. Neither peptide A nor peptide C produced any appreciable effect on the cardiac muscle ryanodine receptor at both high (1.0 microm) and low (0.01 microm) Ca(2+) concentrations. These results suggest the possibility that the in vivo counterpart of peptide C retains both activating and blocking functions of the skeletal muscle-type excitation-contraction coupling. Topics: Animals; Caffeine; Calcium; Calcium Channels, L-Type; Calpain; Coumarins; Fluorescent Dyes; Microsomes; Muscle, Skeletal; Myocardium; Peptide Fragments; Polylysine; Protein Binding; Protein Structure, Secondary; Rabbits; Ryanodine; Ryanodine Receptor Calcium Release Channel | 2002 |