ryanodine has been researched along with chlorocresol* in 19 studies
19 other study(ies) available for ryanodine and chlorocresol
Article | Year |
---|---|
Inhibitory ryanodine prevents ryanodine receptor-mediated Ca²⁺ release without affecting endoplasmic reticulum Ca²⁺ content in primary hippocampal neurons.
Ryanodine is a cell permeant plant alkaloid that binds selectively and with high affinity to ryanodine receptor (RyR) Ca(2+) release channels. Sub-micromolar ryanodine concentrations activate RyR channels while micromolar concentrations are inhibitory. Several reports indicate that neuronal synaptic plasticity, learning and memory require RyR-mediated Ca(2+)-release, which is essential for muscle contraction. The use of micromolar (inhibitory) ryanodine represents a common strategy to suppress RyR activity in neuronal cells: however, micromolar ryanodine promotes RyR-mediated Ca(2+) release and endoplasmic reticulum Ca(2+) depletion in muscle cells. Information is lacking in this regard in neuronal cells; hence, we examined here if addition of inhibitory ryanodine elicited Ca(2+) release in primary hippocampal neurons, and if prolonged incubation of primary hippocampal cultures with inhibitory ryanodine affected neuronal ER calcium content. Our results indicate that inhibitory ryanodine does not cause Ca(2+) release from the ER in primary hippocampal neurons, even though ryanodine diffusion should produce initially low intracellular concentrations, within the RyR activation range. Moreover, neurons treated for 1 h with inhibitory ryanodine had comparable Ca(2+) levels as control neurons. These combined findings imply that prolonged incubation with inhibitory ryanodine, which effectively abolishes RyR-mediated Ca(2+) release, preserves ER Ca(2+) levels and thus constitutes a sound strategy to suppress neuronal RyR function. Topics: Animals; Calcium; Calcium Ionophores; Cells, Cultured; Cresols; Cytoplasm; Endoplasmic Reticulum; Hippocampus; Ionomycin; Neurons; Rats, Sprague-Dawley; Ryanodine; Ryanodine Receptor Calcium Release Channel; Thapsigargin | 2015 |
Functional ryanodine receptors in the plasma membrane of RINm5F pancreatic beta-cells.
Ryanodine receptors (RyR) are Ca(2+) channels that mediate Ca(2+) release from intracellular stores in response to diverse intracellular signals. In RINm5F insulinoma cells, caffeine, and 4-chloro-m-cresol (4CmC), agonists of RyR, stimulated Ca(2+) entry that was independent of store-operated Ca(2+) entry, and blocked by prior incubation with a concentration of ryanodine that inactivates RyR. Patch-clamp recording identified small numbers of large-conductance (gamma(K) = 169 pS) cation channels that were activated by caffeine, 4CmC or low concentrations of ryanodine. Similar channels were detected in rat pancreatic beta-cells. In RINm5F cells, the channels were blocked by cytosolic, but not extracellular, ruthenium red. Subcellular fractionation showed that type 3 IP(3) receptors (IP(3)R3) were expressed predominantly in endoplasmic reticulum, whereas RyR2 were present also in plasma membrane fractions. Using RNAi selectively to reduce expression of RyR1, RyR2, or IP(3)R3, we showed that RyR2 mediates both the Ca(2+) entry and the plasma membrane currents evoked by agonists of RyR. We conclude that small numbers of RyR2 are selectively expressed in the plasma membrane of RINm5F pancreatic beta-cells, where they mediate Ca(2+) entry. Topics: Animals; Caffeine; Calcium; Calcium Channel Agonists; Cell Line, Tumor; Cell Membrane; Central Nervous System Stimulants; Cresols; Dose-Response Relationship, Drug; Fungicides, Industrial; Inositol 1,4,5-Trisphosphate Receptors; Insulin-Secreting Cells; Male; Rats; Rats, Wistar; Ryanodine; Ryanodine Receptor Calcium Release Channel | 2009 |
Caffeine-activated large-conductance plasma membrane cation channels in cardiac myocytes: characteristics and significance.
Caffeine-activated, large-conductance, nonselective cation channels (LCCs) have been found in the plasma membrane of isolated cardiac myocytes in several species. However, little is known about the effects of opening these channels. To examine such effects and to further understand the caffeine-activation mechanism, we carried out studies using whole-cell patch-clamp techniques with freshly isolated cardiac myocytes from rats and mice. Unlike previous studies, thapsigargin was used so that both the effect of opening LCCs and the action of caffeine were independent of Ca(2+) release from intracellular stores. These Ca(2+)-permeable LCCs were found in a majority of the cells from atria and ventricles, with a conductance of approximately 370 pS in rat atria. Caffeine and all its direct metabolic products (theophylline, theobromine, and paraxanthine) activated the channel, while isocaffeine did not. Although they share some similarities with ryanodine receptors (RyRs, the openings of which give rise to Ca(2+) sparks), LCCs also showed some different characteristics. With simultaneous Ca(2+) imaging and current recording, the localized fluorescence increase due to Ca(2+) entry through a single opening of an LCC (SCCaFT) was detected. When membrane potential, instead of current, was recorded, SCCaFT-like fluorescence transients (indicating single LCC openings) were found to accompany membrane depolarizations. To our knowledge, this is the first report directly linking membrane potential changes to a single opening of an ion channel. Moreover, these events in cardiac cells suggest a possible additional mechanism by which caffeine and theophylline contribute to the generation of cardiac arrhythmias. Topics: Animals; Arrhythmias, Cardiac; Caffeine; Calcium Channel Agonists; Calcium Channel Blockers; Calcium Channels; Calcium Signaling; Cell Membrane; Cresols; Enzyme Inhibitors; Heart Atria; Heart Ventricles; In Vitro Techniques; Ion Channel Gating; Membrane Potentials; Mice; Myocytes, Cardiac; Patch-Clamp Techniques; Rats; Ruthenium Red; Ryanodine; Ryanodine Receptor Calcium Release Channel; Sarcoplasmic Reticulum; Sarcoplasmic Reticulum Calcium-Transporting ATPases; Tetracaine; Thapsigargin | 2007 |
Can 4-chloro-m-cresol be substituted for caffeine as an activator of calcium oscillation in bullfrog sympathetic ganglion cells?
4-Chloro-m-cresol (cresol) and caffeine have been shown to be potent activators of the Ca(2+) release mediated by the ryanodine-sensitive Ca(2+) release channel and therefore increase the cytosolic free calcium concentration in skeletal muscles. To distinguish the effects of cresol and caffeine in neurones, the responses of the intracellular ([Ca(2+)](i)) and intraluminal free calcium concentrations to cresol were investigated using bullfrog sympathetic ganglion cells and then compared with those to caffeine. Cresol generated a gradual rise (slow response) with and without a fast transient rise (fast response) in [Ca(2+)](i). A low extracellular Ca(2+) concentration abolished the slow response but not the fast response, thus indicating that the slow response was caused by a Ca(2+) influx across the cell membrane. The fast response was inhibited by ryanodine, thus confirming that the source may therefore be the Ca(2+) release through the ryanodine-sensitive calcium store. Unlike caffeine, the long-term application of cresol did not cause any calcium oscillation; neither did it cause a decrease in the basal calcium levels. Topics: Animals; Caffeine; Calcium Signaling; Cells, Cultured; Cresols; Dose-Response Relationship, Drug; Ganglia, Sympathetic; Rana catesbeiana; Ryanodine | 2006 |
Structural determinants of 4-chloro-m-cresol required for activation of ryanodine receptor type 1.
4-Chloro-m-cresol (4-CmC) is a clinically relevant activator of the intracellular Ca2+ release channel, the ryanodine receptor isoform 1 (RyR1). In this study, the chemical moieties on the 4-CmC molecule required for its activation of RyR1 were determined using structure-activity relationship analysis with a set of commercially available 4-CmC analogs. Separate compounds each lacking one of the three functional groups of 4-CmC (1-hydroxyl, 3-methyl, or 4-chloro) were poor activators of RyR1. Substitution of different chemical groups for the 1-hydroxyl of 4-CmC resulted in compounds that were poor activators of RyR1, suggesting that the hydroxyl group is preferred at this position. Substitution of hydrophobic groups at the 3-position enhanced bioactivity of the compound relative to 4-CmC, whereas substitution with hydrophilic groups abolished bioactivity. Likewise, 4-CmC analogs with hydrophobic groups substituted into the 4-position enhanced bioactivity, whereas hydrophilic or charged groups diminished bioactivity. 4-CmC analogs containing a single hydrophobic group at either the 3- or 4-position as well as 3,5-disubstituted or 3,4,5-trisubstituted phenols were also effective activators of RyR1. These results indicate that the 1-hydroxyl group of 4-CmC is required for activation of RyR1 and that hydrophobic groups at the 3,4- and 5-positions are preferred. These findings suggest that the 4-CmC binding site on RyR1 most likely consists of a hydrophilic region to interact with the 1-hydroxyl as well as a hydrophobic region(s) to interact with chemical groups at the 3- and/or 4-positions of 4-CmC. Topics: Animals; Binding Sites; Binding, Competitive; Cresols; Dose-Response Relationship, Drug; Muscle Fibers, Skeletal; Radioligand Assay; Ryanodine; Ryanodine Receptor Calcium Release Channel; Structure-Activity Relationship; Tritium | 2006 |
Characterization of ryanodine receptor-mediated calcium release in human B cells: relevance to diagnostic testing for malignant hyperthermia.
Mutations in the ryanodine type 1 receptor (RyR1) are causative for malignant hyperthermia. Studies in human B lymphocytes have shown that measurement of RyR1-mediated intracellular Ca(2+) (Ca(2+)(i)) release can differentiate between normal and malignant hyperthermia-susceptible individuals. The authors have further developed the B-cell assay by pharmacologically characterizing RyR1-mediated Ca release in two normal human B-cell lines and demonstrating increased sensitivity of lymphocytes to the RyR1 agonist 4-chloro-m-cresol (4-CmC) in the porcine model of MH.. Ca(2+)(i) was measured fluorometrically using fura-2 in populations of cells in suspension or with fluo-4 in single cells using confocal microscopy. The Dakiki and PP normal human B cell lines were used, as well as lymphocytes obtained from normal and malignant hyperthermia-susceptible pigs. 4-CmC was used to elicit RyR1-mediated Ca release; all experiments were performed in the absence of external Ca(2+).. EC(50) values for 4-CmC were 0.98 and 1.04 mm for Dakiki and PP cells, respectively, demonstrating reproducibility. The 4-CmC-induced increase in Ca(2+)(i) was eliminated by thapsigargin and was unaffected by xestospongin C. The Ca(2+)(i) increase was separable from mitochondrial stores and was inhibited by azumolene. Caffeine did not induce Ca(2+)(i) release, but ryanodine depleted intracellular stores by 50%. Lymphocytes from pigs carrying the Arg614Cys mutation in RyR1 showed increased sensitivity to 4-CmC (EC(50) = 0.47 vs. 0.81 mm for cells derived from normal animals).. RyR1-mediated Ca(2+) signals can be pharmacologically distinguished from other intracellular sources in human B cells, and alterations of RyR1 function can be successfully detected using Ca(2+) release from intracellular stores as an end point. Topics: Animals; B-Lymphocytes; Caffeine; Calcium; Carbonyl Cyanide p-Trifluoromethoxyphenylhydrazone; Cells, Cultured; Cresols; Dose-Response Relationship, Drug; Humans; Imidazoles; Malignant Hyperthermia; Oxazoles; Ryanodine; Ryanodine Receptor Calcium Release Channel; Swine | 2006 |
3,5-di-t-butylcatechol (DTCAT) as an activator of rat skeletal muscle ryanodine receptor Ca2+ channel (RyRC).
In the present study, the effects of 3,5-di-t-butylcatechol (DTCAT) on ryanodine receptor Ca(2+) channel (RyRC) of skeletal muscle sarcoplasmic reticulum (SR) vesicles were investigated, both by monitoring extravesicular Ca(2+) concentration directly with the Ca(2+) indicator dye arsenazo III and by studying the high-affinity [(3)H]ryanodine binding. DTCAT stimulated Ca(2+) release from junctional (terminal cisternae) vesicles in a concentration-dependent manner, with a threshold activating concentration of 30 microM and a pEC(50) value of 3.43+/-0.03 M. The release of Ca(2+) induced by DTCAT was antagonized in a concentration-dependent manner by ruthenium red, thus indicating that RyRC is involved in the mechanism of stimulation. A structure-activity relationship analysis carried out on a limited number of compounds suggested that both hydroxy and t-butyl groups in DTCAT were important for the activation of RyRC. DTCAT inhibited [(3)H]ryanodine binding to SR vesicles with a K(i) of 232.5 microM, thus indicating that it acted directly at the skeletal muscle ryanodine receptor binding site to stimulate Ca(2+) release. In conclusion, the ability of DTCAT to release Ca(2+) from TC vesicles of skeletal muscle is noteworthy in view of its possible use as an alternative compound to either caffeine or halothane for performing the "In vitro contracture test" to diagnose the susceptibility of some patients to develop malignant hyperthermia under particular pharmacological treatments. Topics: Animals; Calcium; Catechols; Cresols; Male; Muscle, Skeletal; Rats; Rats, Sprague-Dawley; Ryanodine; Ryanodine Receptor Calcium Release Channel; Sarcoplasmic Reticulum | 2005 |
Influence of intracellular Ca2+ release modulating drugs on bupivacaine infiltration anesthesia in mice.
The endoplasmic reticulum inside neurons can provide enormous amounts of releasable Ca2+ to increase cytosolic Ca2+ levels through the activation of endoplasmic membrane ion channels. Ryanodine (RyR) channels release Ca2+ into the cytosol when activated by Ca2+ influx through voltage-gated channels, or by cyclicADP ribose. Inositol tris-phosphate (IP3) channels are stimulated by phospolipid metabolism and the release of IP3. The hypothesis was tested that drugs that bind RyR or IP3 channels would affect the anesthetic potency of bupivacaine. The radiant heat tail-flick test was used to assess for anesthesia following subcutaneous infiltration of bupivacaine and Ca2+ modulating drugs in the tails of mice. No musculature is contained in the tail that could result in motor block. The RyR channel agonists 4-chloro-m-cresol and poly-L-lysine significantly reduced the anesthetic potency of bupivacaine. The plant alkaloid ryanodine elicited a bi-phasic effect, with low concentrations blocking bupivacaine anesthesia, and a high concentration enhancing anesthesia. Alternatively, the RyR channel antagonist dantrolene sodium dose-dependently increased bupivacaine's potency. However, the IP3 channel drugs were inactive. The IP3 agonist adenophostin A failed to affect bupivacaine anesthesia. Furthermore, bupivacaine was unaffected by the IP3 channel antagonists xestospongin C or low molecular weight heparin. Our results indicate that only the RyR channel drugs modulated the anesthetic effects of bupivacaine. Electrophysiological and molecular studies of sensory dorsal root ganglia neurons, the source of Adelta and C-fiber nociceptors, have demonstrated the presence of RyR3 Ca2+ release channels. This provides the first evidence that RyR channels might affect bupivacaine anesthesia in some fashion. Topics: Anesthesia, Local; Anesthetics, Local; Animals; Bupivacaine; Calcium Channel Agonists; Calcium Channel Blockers; Calcium Channels; Cresols; Dantrolene; Drug Interactions; Inositol 1,4,5-Trisphosphate Receptors; Macrocyclic Compounds; Male; Mice; Mice, Inbred ICR; Oxazoles; Polylysine; Receptors, Cytoplasmic and Nuclear; Ryanodine; Ryanodine Receptor Calcium Release Channel | 2004 |
Mutational analysis of putative calcium binding motifs within the skeletal ryanodine receptor isoform, RyR1.
The functional relevance of putative Ca(2+) binding motifs previously identified with Ca(2+) overlay binding analysis within the skeletal muscle ryanodine receptor isoform (RyR1) was examined using mutational analysis. EF hands between amino acid positions 4081 and 4092 (EF1) and 4116 and 4127 (EF2) were scrambled singly or in combination within the full-length rabbit RyR1 cDNA. These cDNAs were expressed in 1B5 RyR-deficient myotubes and channel function assessed using Ca(2+)-imaging techniques, [(3)H]ryanodine binding measurements, and single channel experiments. In intact myotubes, these mutations did not affect functional responses to either depolarization or RyR agonists (caffeine, 4-chloro-m-cresol) compared with wtRyR1. However, in [(3)H]ryanodine binding measurements, both Ca(2+) activation and inhibition of the EF1 mutant was significantly altered compared with wtRyR1. No high affinity [(3)H]ryanodine binding was observed in membranes expressing the EF2 mutation, although in single channel measurements, the EF2-disrupted channel could be activated by micromolar Ca(2+) concentrations. In addition, micromolar levels of ryanodine placed these channels into the classical half-conductance state, thus indicating that occupancy of high affinity ryanodine binding sites is not required for ryanodine-induced subconductance states in RyR1. Disruption of three additional putative RyR1 calcium binding motifs located between amino acid positions 4254 and 4265 (EF3), 4407 and 4418 (EF4), or 4490 and 4502 (EF5) either singly or in combination (EF3-5) did not affect functional responses in 1B5 myotubes except that the EC(50) for caffeine activation for the EF3 construct was significantly increased compared with wtRyR1. However, in [(3)H]ryanodine binding experiments, the Ca(2+)-dependent activation and inactivation of mutated RyRs containing EF3, EF4, or EF5 was unaffected when compared with wtRyR1. Topics: Amino Acid Motifs; Amino Acid Sequence; Animals; Caffeine; Calcium; Cresols; DNA Mutational Analysis; DNA, Complementary; Dose-Response Relationship, Drug; Fungicides, Industrial; Immunoblotting; Mice; Molecular Sequence Data; Muscle, Skeletal; Muscles; Mutation; Phosphodiesterase Inhibitors; Protein Binding; Protein Isoforms; Protein Structure, Tertiary; Rabbits; Ryanodine; Ryanodine Receptor Calcium Release Channel; Sequence Homology, Amino Acid | 2004 |
Functional defects in six ryanodine receptor isoform-1 (RyR1) mutations associated with malignant hyperthermia and their impact on skeletal excitation-contraction coupling.
Malignant hyperthermia (MH) is a potentially fatal pharmacogenetic disorder of skeletal muscle that segregates with >60 mutations within the MHS-1 locus on chromosome 19 coding for ryanodine receptor type 1 (RyR1). Although some MHRyR1s have been shown to enhance sensitivity to caffeine and halothane when expressed in non-muscle cells, their influence on EC coupling can only be studied in skeletal myotubes. We therefore expressed WTRyR1, six of the most common human MHRyR1s (R163C, G341R, R614C, R2163C, V2168M, and R2458H), and a newly identified C-terminal mutation (T4826I) in dyspedic myotubes to study their functional defects and how they influence EC coupling. Myotubes expressing any MHRyR1 were significantly more sensitive to stimulation by caffeine and 4-CmC than those expressing WTRyR1. The hypersensitivity of MH myotubes extended to K+ depolarization. MH myotubes responded to direct channel activators with maximum Ca2+ amplitudes consistently smaller than WT myotubes, whereas the amplitude of their responses to depolarization were consistently larger than WT myotubes. The magnitudes of responses attainable from myotubes expressing MHRyR1s are therefore related to the nature of the stimulus rather than size of the Ca2+ store. The functional changes of MHRyR1s were directly analyzed using [3H]ryanodine binding analysis of isolated myotube membranes. Although none of the MHRyR1s examined significantly altered EC50 for Ca2+ activation, many failed to be completely inhibited by a low Ca2+ ( Topics: Animals; Caffeine; Calcium; Cell Membrane; Central Nervous System Stimulants; Collagen; Cresols; DNA, Complementary; Dose-Response Relationship, Drug; Drug Combinations; Herpesvirus 1, Human; Immunoblotting; Inhibitory Concentration 50; Laminin; Magnesium; Malignant Hyperthermia; Mice; Muscle Contraction; Muscle, Skeletal; Muscles; Mutation; Potassium Chloride; Protein Structure, Tertiary; Proteoglycans; Rabbits; Ryanodine; Ryanodine Receptor Calcium Release Channel | 2003 |
Identification of a key determinant of ryanodine receptor type 1 required for activation by 4-chloro-m-cresol.
4-Chloro-m-cresol (4-CmC) is a potent and specific activator of the intracellular Ca2+ release channel, the ryanodine receptor (RyR). We have previously shown that RyR1 expressed in dyspedic 1B5 myotubes is activated by 4-CmC, whereas RyR3 is not (Fessenden, J. D., Wang, Y., Moore, R. A., Chen, S. R. W., Allen, P. D., and Pessah, I. N. (2000) Biophys. J. 79, 2509-2525). To identify region(s) on RyR1 that are responsible for mediating activation by 4-CmC, we expressed RyR1-RyR3 chimeric proteins in dyspedic 1B5 myotubes and then measured 4-CmC-induced increases in intracellular Ca2+. Substitution of the C-terminal third of RyR1 into RyR3 imparted 4-CmC sensitivity to the resulting chimera, thus suggesting that determinants required for activation by 4-CmC are located in this region. We subdivided the C-terminal third of RyR1 into smaller segments and identified two overlapping regions of RyR1 (amino acids 3769-4180 and 4007-4382) that each imparted 4-CmC sensitivity to RyR3. Substitution of the 173 amino acids of RyR1 common to these two chimeras (amino acids 4007-4180) also weakly restored 4-CmC sensitivity in the resulting chimera. To confirm these findings, we created a complementary set of chimeras containing RyR3 substitutions in RyR1. Substitution of the RyR3 C terminus into RyR1 disrupted 4-CmC sensitivity in the resulting chimera. In addition, substitution of the corresponding RyR3 sequence into positions 4007-4180 of RyR1 disrupted 4-CmC sensitivity. Taken together, these results suggest that essential determinants required for activation of RyR1 by 4-CmC reside within a 173-amino acid region between residues 4007 and 4180. Topics: Animals; Caffeine; Calcium; Cresols; Gene Expression; Molecular Weight; Muscle Fibers, Skeletal; Mutagenesis, Site-Directed; Potassium Chloride; Protein Isoforms; Rabbits; Recombinant Fusion Proteins; Ryanodine; Ryanodine Receptor Calcium Release Channel; Structure-Activity Relationship; Transfection; Tritium | 2003 |
Ca(2+)-induced Ca(2+) release in the pancreatic beta-cell: direct evidence of endoplasmic reticulum Ca(2+) release.
The role of the Ca(2+)-induced Ca(2+) release channel (ryanodine receptor) in MIN6 pancreatic beta-cells was investigated. An endoplasmic reticulum (ER)-targeted "cameleon" was used to report lumenal free Ca(2+). Depolarization of MIN6 cells with KCl led to release of Ca(2+) from the ER. This ER Ca(2+) release was mimicked by treatment with the ryanodine receptor agonists caffeine and 4-chloro-m-cresol, reversed by voltage-gated Ca(2+) channel antagonists and blocked by treatment with antagonistic concentrations of ryanodine. The depolarization-induced rise in cytoplasmic Ca(2+) was also inhibited by ryanodine, which did not alter voltage-gated Ca(2+) channel activation. Both ER and cytoplasmic Ca(2+) changes induced by depolarization occurred in a dose-dependent manner. Glucose caused a delayed rise in cytoplasmic Ca(2+) but no detectable change in ER Ca(2+). Carbamyl choline caused ER Ca(2+) release, a response that was not altered by ryanodine. Taken together, these results provide strong evidence that Ca(2+)-induced Ca(2+) release augments cytoplasmic Ca(2+) signals in pancreatic beta-cells. Topics: Caffeine; Calcium; Calcium Channel Blockers; Calcium Channels; Carbachol; Cell Line; Cresols; Cytoplasm; Endoplasmic Reticulum; Glucose; Islets of Langerhans; Membrane Potentials; Potassium Chloride; Ryanodine; Ryanodine Receptor Calcium Release Channel; Type C Phospholipases | 2003 |
Skeletal muscle type ryanodine receptor is involved in calcium signaling in human B lymphocytes.
The regulation of intracellular free Ca2+ concentration ([Ca2+]i) in B cells remains poorly understood and is presently explained almost solely by inositol 1,4,5-triphosphate (IP3)-mediated Ca2+ release, followed by activation of a store-operated channel mechanism. In fact, there are reports indicating that IP3 production does not always correlate with the magnitude of Ca2+ release. We demonstrate here that human B cells express a ryanodine receptor (RYR) that functions as a Ca2+ release channel during the B cell antigen receptor (BCR)-stimulated Ca2+ signaling process. Immunoblotting studies showed that both human primary CD19(+) B and DAKIKI cells express a 565-kDa immunoreactive protein that is indistinguishable in molecular size and immunoreactivity from the RYR. Selective reverse transcription-polymerase chain reaction, restriction fragment length polymorphism, and sequencing of cloned cDNA indicated that the major isoform of the RYR expressed in primary CD19(+) B and DAKIKI cells is identical to the skeletal muscle type (RYR1). Saturation analysis of [3H]ryanodine binding yielded Bmax = 150 fmol/mg of protein and Kd = 110 nM in DAKIKI cells. In fluo-3-loaded CD19(+) B and DAKIKI cells, 4-chloro-m-cresol, a potent activator of Ca2+ release mediated by the ryanodine-sensitive Ca2+ release channel, induced Ca2+ release in a dose-dependent and ryanodine-sensitive fashion. Furthermore, BCR-mediated Ca2+ release in CD19(+) B cells was significantly altered by 4-chloro-m-cresol and ryanodine. These results indicate that RYR1 functions as a Ca2+ release channel during BCR-stimulated Ca2+ signaling and suggest that complex Ca2+ signals that control the cellular activities of B cells may be generated by cooperation of the IP3 receptor and RYR1. Topics: Amino Acid Sequence; Antibodies; Antigens, CD19; B-Lymphocytes; Base Sequence; Calcium Signaling; Cell Line; Cloning, Molecular; Cresols; DNA, Complementary; Humans; Immunoglobulin M; Molecular Sequence Data; Muscle, Skeletal; Protein Binding; Ryanodine; Ryanodine Receptor Calcium Release Channel; Sequence Homology, Amino Acid | 1999 |
Caffeine-sensitive calcium stores regulate synaptic transmission from retinal rod photoreceptors.
We investigated the role of caffeine-sensitive intracellular stores in regulating intracellular calcium ([Ca(2+)](i)) and glutamatergic synaptic transmission from rod photoreceptors. Caffeine transiently elevated and then markedly depressed [Ca(2+)](i) to below prestimulus levels in rod inner segments and synaptic terminals. Concomitant with the depression was a reduction of glutamate release and a hyperpolarization of horizontal cells, neurons postsynaptic to rods. Caffeine did not affect the rods' membrane potentials indicating that caffeine likely acted via some mechanism(s) other than a voltage-dependent deactivation of the calcium channels. Most of caffeine's depressive action on [Ca(2+)](i), on glutamate release, and on I(Ca) in rods can be attributed to calcium release from stores: (1) caffeine's actions on [Ca(2+)](i) and I(Ca) were reduced by intracellular BAPTA and barium substitution for calcium, (2) other nonxanthine store-releasing compounds, such as thymol and chlorocresol, also depressed [Ca(2+)](i), and (3) the magnitude of [Ca(2+)](i) depression depended on basal [Ca(2+)](i) before caffeine. We propose that caffeine-released calcium reduces I(Ca) in rods by an as yet unidentified intracellular signaling mechanism. To account for the depression of [Ca(2+)](i) below rest levels and the increased fall rate of [Ca(2+)](i) with higher basal calcium, we also propose that caffeine-evoked calcium release from stores activates a calcium transporter that, via sequestration into stores or extrusion, lowers [Ca(2+)](i) and suppresses glutamate release. The effects of store-released calcium reported here operate at physiological calcium concentrations, supporting a role in regulating synaptic signaling in vivo. Topics: Ambystoma; Animals; Barium; Caffeine; Calcium; Calcium Channels; Chelating Agents; Cresols; Egtazic Acid; Electrophysiology; In Vitro Techniques; Kinetics; Models, Neurological; Presynaptic Terminals; Retinal Rod Photoreceptor Cells; Ryanodine; Synaptic Transmission; Thymol; Xenopus laevis | 1999 |
Functional consequences of mutations of conserved, polar amino acids in transmembrane sequences of the Ca2+ release channel (ryanodine receptor) of rabbit skeletal muscle sarcoplasmic reticulum.
The potential role in Ca2+ release channel function of highly conserved, polar, and small amino acids in predicted transmembrane sequences in the rabbit skeletal muscle ryanodine receptor (RyR1) was investigated through mutagenesis. Acidic amino acids Asp3987, Glu4032, Asp4815, Asp4917, Asp4938, and Asp4969 and amidated residues Asn4034, Asn4037, Asn4574, Asn4805, Asn4806, and Gln4933, and Gly4033 were mutated to Ala, and Ala3988 was mutated to Val. When expressed in HEK-293 cells and challenged with either caffeine or 4-chloro-m-cresol, mutants E4032A, N4806A, D4815A, and D4917A did not respond, indicating that Ca2+ release channel function was impaired. None of these mutants exhibited specific binding of [3H]ryanodine. Mutants N4805A and Q4933A showed a diminished response to both caffeine and 4-chloro-m-cresol, but [3H]ryanodine binding was not altered. Other mutant responses and the responses of mutants E4032D, N4806Q or D, D4815N or E, and D4938N or E were unaltered when compared with RyR1. However, mutants E4032Q, D4917N or E, and Q4933N or E displayed neither caffeine nor 4-chloro-m-cresol response nor [3H]ryanodine binding. Sedimentation assays indicated that the nonfunctional mutants did contain tetrameric complexes, implying that defects in the assembly of a functional channel did not occur with specific mutations in transmembrane sequences. These results support the view that amino acids Glu4032 (M2), Asn4806 (M7), Asp4815 (M7), Asp4917 (M10), and Gln4933 (M10) are involved in channel function and regulation. Topics: Amino Acid Sequence; Amino Acid Substitution; Animals; Caffeine; Calcium; Cell Line; Conserved Sequence; Cresols; Humans; Kinetics; Macromolecular Substances; Molecular Sequence Data; Muscle, Skeletal; Mutagenesis, Site-Directed; Point Mutation; Rabbits; Recombinant Proteins; Ryanodine; Ryanodine Receptor Calcium Release Channel; Sequence Alignment; Sequence Homology, Amino Acid; Transfection; Valine | 1998 |
4-Chloro-m-cresol test--a possible supplementary test for diagnosis of malignant hyperthermia susceptibility.
In vitro contracture test (IVCT) for diagnosis of MH in our laboratory has a sensitivity of 100% and a specificity of 93%. The results are equivocal in 10-15%, and supplementary tests may thus be required. We have tested the hypothesis that 4-chloro-m-cresol (4-cmc) may be useful for a supplementary test.. Muscle from 41 consecutive patients from 7 families undergoing diagnostic muscle biopsy with IVCT was exposed in vitro to increasing concentrations of 4-cmc (25, 50, 75, 100, 150, and 200 mumol l-1), and the force development recorded. Diagnosis of MH susceptibility was made with standard halothane and caffeine tests and included as results MHS (MH susceptible), MHN (MH negative), and MHE (equivoval result).. At all concentrations of 4-cmc, the increase in baseline force was significantly greater in the MHS group compared to the MHN group (P < 0.05). Muscle from 15 MH-susceptible (MHS) patients responded to 4-cmc with increasing force at a threshold concentration of 75 mumol l-1 or less, whereas muscle from 23 MH-non-susceptible (MHN) patients had thresholds of 100 mumol l-1 or more. The accuracy of the chlorocresol test was thus 100% (95% confidence limits 90.75-100%) at a threshold of 75 mumol l-1. Amplitude of contractures at 2 mmol l-1 caffeine was not different from contractures at 75 mumol l-1 of 4-cmc in either the MHS or the MHN group (P > 0.05). In vivo concentrations of chlorocresol from clinical use of insulin and somatropin are estimated to be 20 times less than the threshold concentration and thus these drugs seem safe in MH patients.. 4-chloro-m-cresol may be a suitable aid to clarify puzzling results of standard testing of MH susceptibility. Topics: Biopsy; Caffeine; Cresols; Disease Susceptibility; Dose-Response Relationship, Drug; Halothane; Humans; In Vitro Techniques; Malignant Hyperthermia; Muscle Contraction; Ryanodine | 1997 |
4-Chloro-m-cresol, a potent and specific activator of the skeletal muscle ryanodine receptor.
The aim of the present study was to determine the effects of 4-chloro-m-cresol (4-CmC), a preservative often added to drugs intravenously administered, on the skeletal muscle sarcoplasmic reticulum (SR) Ca2+ release channel/ryanodine receptor. In heavy SR vesicles obtained from rabbit back muscles, 4-CmC stimulated (Ca2+)-activated [3H]ryanodine binding with an EC50 of about 100 microM. In the same concentration range, 4-CmC directly activated the isolated Ca2+ release channel reconstituted into planar lipid bilayers. The sensitivity to 4-CmC was found to be higher when applied to the luminal side of the channel suggesting binding site(s) different from those of nucleotides and caffeine. In skeletal muscle fibre bundles obtained from biopsies of patients susceptible to malignant hyperthermia, a skeletal muscle disease caused by point mutations in the ryanodine receptor, 4-CmC evoked caffeine-like contractures. Contrary to caffeine which induces contractures in millimolar concentrations, the threshold concentration for 4-CmC was 25 microM compared to 75 microM for non-mutated control fibres. Since these data strongly indicate that 4-CmC specifically activates SR Ca2+ release also in intact cell systems, this substance might become a powerful tool to investigate ryanodine receptor-mediated Ca2+ release in muscle and non-muscle tissue. Topics: Animals; Calcium; Calcium Channels; Cresols; Muscle Contraction; Muscle Proteins; Muscle, Skeletal; Rabbits; Ryanodine; Ryanodine Receptor Calcium Release Channel | 1996 |
4-Chloro-m-cresol: a specific tool to distinguish between malignant hyperthermia-susceptible and normal muscle.
Single-channel recordings have indicated that ryanodine receptor (RyR1) mutation Arg615Cys of porcine malignant hyperthermia-susceptible (MHS) muscle is not directly associated with the enhanced caffeine sensitivity of MH(S) muscle [1]. In the present study, the effect of a novel activator of RyR1, 4-chlorom-cresol (4-CmC), was investigated on high-affinity [3H]ryanodine binding to porcine skeletal sarcoplasmic reticulum. The 4-CmC affinity of [3H]ryanodine binding to MHS vesicles was 2-fold higher compared to that in normal tissue. This enhanced affinity was confirmed when the effect of 4-CmC on [3H]ryanodine binding to the isolated CHAPS-solubilized MHS RyR1 was investigated. 4-CmC is, therefore, suggested to be a potent tool to distinguish between Ca2+ release from MHS and normal muscle. Topics: Animals; Caffeine; Calcium; Cresols; Malignant Hyperthermia; Muscle, Skeletal; Protein Binding; Ryanodine; Swine; Tritium | 1996 |
Oscillations of cytosolic free calcium in bombesin-stimulated HIT-T15 cells.
The mechanism underlying the generation of cytosolic free Ca2+ ([Ca2+]i) oscillations by bombesin, a receptor agonist activating phospholipase C, in insulin secreting HIT-T15 cells was investigated. At 25 microM, 61% of cells displayed [Ca2+]i oscillations with variable patterns. The bombesin-induced [Ca2+]i oscillations could last more than 1 h and glucose was required for maintaining these [Ca2+]i fluctuations. Bombesin-evoked [Ca2+]i oscillations were dependent on extracellular Ca2+ entry and were attenuated by membrane hyperpolarization or by L-type Ca2+ channel blockers. These [Ca2+]i oscillations were apparently not associated with fluctuations in plasma membrane Ca2+ permeability as monitored by the Mn2+ quenching technique. 2,5-di-(tert-butyl)-1,4-benzohydroquinone (tBuBHQ) and 4-chloro-m-cresol, which interfere with intracellular Ca2+ stores, respectively, by inhibiting Ca(2+)-ATPase of endoplasmic reticulum and by affecting Ca(2+)-induced Ca2+ release, disrupted bombesin-induced [Ca2+]i oscillations. 4-chloro-m-cresol raised [Ca2+]i by mobilizing an intracellular Ca2+ pool, an effect not altered by ryanodine. Caffeine exerted complex actions on [Ca2+]i. It raised [Ca2+]i by promoting Ca2+ entry while inhibiting bombesin-elicited [Ca2+]i oscillations. Our results suggest that in bombesin-elicited [Ca2+]i oscillations in HIT-T15 cells: (i) the oscillations originate primarily from intracellular Ca2+ stores; and (ii) the Ca2+ influx required for maintaining the oscillations is in part membrane potential-sensitive and not coordinated with [Ca2+]i oscillations. The interplay between intracellular Ca2+ stores and voltage-sensitive and voltage-insensitive extracellular Ca2+ entry determines the [Ca2+]i oscillations evoked by bombesin. Topics: Animals; Biological Clocks; Bombesin; Caffeine; Calcium; Calcium Channel Blockers; Calcium Channels; Calcium-Transporting ATPases; Cell Line; Central Nervous System Stimulants; Chelating Agents; Circadian Rhythm; Cresols; Cricetinae; Cytosol; Diazoxide; Egtazic Acid; Fura-2; Glucose; Hydroquinones; Membrane Potentials; Ryanodine; Verapamil | 1996 |