ryanodine and cesium-chloride

ryanodine has been researched along with cesium-chloride* in 4 studies

Other Studies

4 other study(ies) available for ryanodine and cesium-chloride

ArticleYear
Characterization of ryanodine receptor type 1 single channel activity using "on-nucleus" patch clamp.
    Cell calcium, 2014, Volume: 56, Issue:2

    In this study, we provide the first description of the biophysical and pharmacological properties of ryanodine receptor type 1 (RyR1) expressed in a native membrane using the on-nucleus configuration of the patch clamp technique. A stable cell line expressing rabbit RyR1 was established (HEK-RyR1) using the FLP-in 293 cell system. In contrast to untransfected cells, RyR1 expression was readily demonstrated by immunoblotting and immunocytochemistry in HEK-RyR1 cells. In addition, the RyR1 agonists 4-CMC and caffeine activated Ca(2+) release that was inhibited by high concentrations of ryanodine. On nucleus patch clamp was performed in nuclei prepared from HEK-RyR1 cells. Raising the [Ca(2+)] in the patch pipette resulted in the appearance of a large conductance cation channel with well resolved kinetics and the absence of prominent subconductance states. Current versus voltage relationships were ohmic and revealed a chord conductance of ∼750pS or 450pS in symmetrical 250mM KCl or CsCl, respectively. The channel activity was markedly enhanced by caffeine and exposure to ryanodine resulted in the appearance of a subconductance state with a conductance ∼40% of the full channel opening with a Po near unity. In total, these properties are entirely consistent with RyR1 channel activity. Exposure of RyR1 channels to cyclic ADP ribose (cADPr), nicotinic acid adenine dinucleotide phosphate (NAADP) or dantrolene did not alter the single channel activity stimulated by Ca(2+), and thus, it is unlikely these molecules directly modulate RyR1 channel activity. In summary, we describe an experimental platform to monitor the single channel properties of RyR channels. We envision that this system will be influential in characterizing disease-associated RyR mutations and the molecular determinants of RyR channel modulation.

    Topics: Animals; Caffeine; Calcium; Calcium Channel Agonists; Cell Nucleus; Cesium; Chlorides; Endoplasmic Reticulum; HEK293 Cells; Humans; Patch-Clamp Techniques; Potassium Chloride; Rabbits; Ryanodine; Ryanodine Receptor Calcium Release Channel; Signal Transduction; Ultraviolet Rays

2014
Ryanodine stabilizes multiple conformational states of the skeletal muscle calcium release channel.
    The Journal of biological chemistry, 1992, Nov-25, Volume: 267, Issue:33

    Nanomolar to micromolar ryanodine alters the gating kinetics of the Ca2+ release channel from skeletal sarcoplasmic reticulum (SR) fused with bilayer lipid membranes (BLM). In the presence of asymmetric CsCl and 100 microM CaCl2 cis, ryanodine (RY) (5-40 nM) activates the channel, increasing the open probability (po; maximum 300% of control) without changing unitary conductance (468 picosiemens (pS)). Statistical analyses of gating kinetics reveal that open and closed dwell times exhibit biexponential distributions and are significantly modified by nanomolar RY. Altered channel gating kinetics with low nanomolar RY is fully reversible and correlates well with binding kinetics of nanomolar [3H]RY with its high affinity site (Kd1 = 0.7 nM) under identical experimental conditions. RY (20-50 nM) induces occasional 1/2 conductance fluctuations which correlate with [3H]RY binding to a second site having lower affinity (Kd2 = 23 nM). RY (5-50 nM) in the presence of 500 mM CsCl significantly enhances Ca(2+)-induced Ca2+ release from actively loaded SR vesicles. Ryanodine > or = 50 nM stabilizes the channel in a 234-pS subconductance which is not readily reversible. RY (> or = 70 microM) produces a unidirectional transition from the 1/2 to a 1/4 conductance fluctuation, whereas RY > or = 200 microM causes complete closure of the channel. The RY required for stabilizing 1/4 conductance transitions and channel closure do not quantitatively correlate with [3H]RY equilibrium binding constants and is attributed to significant reduction in association kinetics with > 200 nM [3H]RY in the presence of 500 mM CsCl. These results demonstrate that RY stabilizes four discrete states of the SR release channel and supports the existence of multiple interacting RY effector sites on the channel protein.

    Topics: Animals; Binding Sites; Calcium Channels; Cesium; Chlorides; Electric Conductivity; Ion Channel Gating; Kinetics; Membrane Potentials; Muscles; Protein Conformation; Rabbits; Ryanodine; Sarcoplasmic Reticulum

1992
Positive inotropic effect of ryanodine on rabbit ventricular muscle: dependence on the intracellular calcium load.
    General physiology and biophysics, 1989, Volume: 8, Issue:6

    Two types of electrical and mechanical responses to 1 mumol/l ryanodine, depending on the intracellular calcium load, were observed in rabbit papillary muscles. In a normal calcium solution, ryanodine induced a transient decline followed by a stable increase in the developed force (by 20 +/- 5% of the pretreatment level; n = 30) and prolonged the action potential (AP). The positive ryanodine response showed an increased time-to-peak force and was completely suppressed by 2 mumol/l nifedipine, partially blocked by 50 mumol/l tetracaine (Ca2+ release blocker), but greatly potentiated by 20 mmol/l CsCl or (-) Bay R 5414 which prolonged the AP. The prolonged time-to-peak force of the positive ryanodine response was shortened by procedures raising the content of Ca2+ in the sarcoplasmic reticulum (SR). It is suggested that the initial decline in the force amplitude results from Ca2+ leakage from the SR which is further compensated for by an elevation of both the transmembrane Ca2+ entry and intracellular Ca2+ release. In calcium overloaded myocardium, 1 mumol/l ryanodine caused irreversible contracture and dramatic AP shortening, explained by a massive Ca2+ release from the overloaded SR into the cytoplasm. It is concluded that the calcium content in the SR is the main modulator of the electrical and mechanical effects of ryanodine in ventricular myocardium.

    Topics: Alkaloids; Animals; Calcium; Cesium; Chlorides; Heart Ventricles; In Vitro Techniques; Myocardial Contraction; Nifedipine; Ouabain; Papillary Muscles; Rabbits; Ryanodine; Tetracaine; Ventricular Function

1989
Mechanisms of arrhythmogenic delayed and early afterdepolarizations in ferret ventricular muscle.
    The Journal of clinical investigation, 1986, Volume: 78, Issue:5

    Drug-induced triggered arrhythmias in heart muscle involve oscillations of membrane potential known as delayed or early afterdepolarizations (DADs or EADs). We examined the mechanism of DADs and EADs in ferret ventricular muscle. Membrane potential, tension and aequorin luminescence were measured during exposure to elevated [Ca2+]0, strophanthidin and/or isoproterenol (to induce DADs), or cesium chloride (to induce EADs). Ryanodine (10(-9)-10(-6) M), an inhibitor of Ca2+ release from the sarcoplasmic reticulum, rapidly suppressed DADs and triggered arrhythmias. When cytoplasmic Ca2+-buffering capacity was enhanced by loading cells with the Ca2+ chelators BAPTA or quin2, DADs were similarly inhibited, as were contractile force and aequorin luminescence. In contrast to DADs, EADs induced by Cs were not suppressed by ryanodine or by loading with intracellular Ca2+ chelators. The possibility that transsarcolemmal Ca2+ entry might produce EADs was evaluated with highly specific dihydropyridine Ca channel agonists and antagonists. Bay K8644 (100-300 nM) potentiated EADs, whereas nitrendipine (3-20 microM) abolished EADs. We conclude that DADs and DAD-related triggered arrhythmias are activated by an increase in intracellular free Ca2+ concentration, whereas EADs do not require elevated [Ca2+]i but rather arise as a direct consequence of Ca2+ entry through sarcolemmal slow Ca channels.

    Topics: Animals; Arrhythmias, Cardiac; Carnivora; Cesium; Chelating Agents; Chlorides; Ferrets; Heart; Heart Rate; Heart Ventricles; Isoproterenol; Membrane Potentials; Ryanodine; Strophanthidin; Ventricular Function

1986