ryanodine has been researched along with 9-anthroic-acid* in 5 studies
5 other study(ies) available for ryanodine and 9-anthroic-acid
Article | Year |
---|---|
Demonstration of calcium-activated transient outward chloride current and delayed rectifier potassium currents in Swine atrial myocytes.
Cellular electrophysiology is not fully understood in the atrium of pig heart. The objective of the present study was to determine whether transient outward current (I(to)), ultra-rapid delayed rectifier potassium current (I(Kur)), and rapid and slow delayed rectifier K(+) currents (I(Kr) and I(Ks)) were present in pig atrium. The whole-cell patch technique was applied to record membrane currents and action potentials in myocytes isolated from pig atrium. It was found that an I(to) was activated upon depolarization voltage steps to between -10 and +60 mV from -50 mV in pig atrial cells, and the I(to) was sensitive to the inhibition by the blockade of L-type calcium (Ca(2+)) current, showed a "bell-shaped" I-V relationship, typical of I(to2) (i.e. I(Cl.Ca)). The I(to2) was inhibited by the chloride (Cl(-)) channel blocker anthracene-9-carboxylic acid (9-AC, 200 micromol/l) or 4,4'-diisothiocyanostilben-2,2'disulfonic acid (200 micromol/l), and by Cl(-) substitution in the superfusate. I(Kur) was found in pig atrial myocytes, and the current showed properties of weak inward rectification and use- and frequency-dependent reduction. I(Kur) was resistant to tetraethylammonium, but sensitive to inhibition by 4-aminopyridine (4-AP) (IC(50) = 71.7 +/- 3.5 micromol/l). In addition, E-4031-sensitive I(Kr) and chromanol 293B-sensitive I(Ks) were observed in pig atrial myocytes. Blockade of I(to2), I(Kur), I(Kr) or I(Ks) with corresponding blockers significantly prolonged atrial action potentials. These results indicate that Ca(2+)-activated I(to2), 4-AP-sensitive I(Kur), E-4031-sensitive I(Kr), and 293B-sensitive I(Ks) are present in pig atrial myocytes, and these currents play important roles in action potential repolarization of pig atria. Topics: 4-Aminopyridine; Animals; Anthracenes; Calcium; Chloride Channels; Electrophysiology; Heart Atria; Inhibitory Concentration 50; Membrane Potentials; Myocardium; Patch-Clamp Techniques; Potassium; Potassium Channel Blockers; Potassium Channels; Ryanodine; Swine; Tetraethylammonium; Time Factors | 2004 |
Role of sarcoplasmic reticulum in control of membrane potential and nitrergic response in opossum lower esophageal sphincter.
1. We previously demonstrated that a balance of Ca2+-activated Cl- current (ICl(Ca)) and K+ current activity sets the resting membrane potential of opossum lower esophageal sphincter (LES) circular smooth muscle at approximately -41 mV, which leads to continuous spike-like action potentials and the generation of basal tone. Ionic mechanisms underlying this basal ICl(Ca) activity and its nitrergic regulation remain unclear. Recent studies suggest that spontaneous Ca2+ release from sarcoplasmic reticulum (SR) and myosin light chain kinase (MLCK) play important roles. The current study investigated this possibility. Conventional intracellular recordings were performed on circular smooth muscle of opossum LES. Nerve responses were evoked by electrical square wave pulses of 0.5 ms duration at 20 Hz. 2. In the presence of nifedipine (1 microm), substance P (1 microm), atropine (3 microm) and guanethidine (3 microm), intracellular recordings demonstrated a resting membrane potential (MP) of -38.1+/-0.7 mV (n=25) with spontaneous membrane potential fluctuations (MPfs) of 1-3 mV. Four pulses of nerve stimulation induced slow inhibitory junction potentials (sIJPs) with an amplitude of 6.1+/-0.3 mV and a half-amplitude duration of 1926+/-147 ms (n=25). 3. 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ), a specific guanylyl cyclase inhibitor, abolished sIJPs, but had no effects on MPfs. Caffeine, a ryanodine receptor agonist, hyperpolarized MP and abolished sIJPs and MPfs. Ryanodine (20 microm) inhibited the sIJP and induced biphasic effects on MP, an initial small hyperpolarization followed by a large depolarization. sIJPs and MPfs were also inhibited by cyclopiazonic acid, an SR Ca2+ ATPase inhibitor. Specific ICl(Ca) and MLCK inhibitors hyperpolarized the MP and inhibited MPfs and sIJPs. 4. These data suggest that (1). spontaneous release of Ca2+ from the SR activates ICl(Ca), which in turn contributes to resting membrane potential; (2). MLCK is involved in activation of ICl(Ca); (3). inhibition of ICl(Ca) is likely to underlie sIJPs induced by nitrergic innervation. Topics: Animals; Anthracenes; Atropine; Azepines; Caffeine; Calcium; Chloride Channels; Enzyme Inhibitors; Esophagogastric Junction; Female; Guanethidine; In Vitro Techniques; Indoles; Male; Membrane Potentials; Muscle, Smooth; Myosin-Light-Chain Kinase; Nifedipine; Niflumic Acid; Nitric Oxide; Opossums; Oxadiazoles; Quinoxalines; Ryanodine; Sarcoplasmic Reticulum; Substance P; Tetraethylammonium | 2003 |
The Cl(-) channel blocker niflumic acid releases Ca(2+) from an intracellular store in rat pulmonary artery smooth muscle cells.
The effect of the Cl- channel blockers niflumic acid (NFA), 5-nitro-2-(3-phenylpropylamino)-benzoic acid (NPPB), 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS), and anthracene-9-carboxylic acid (A-9-C), on Ca2+ signalling in rat pulmonary artery smooth muscle cells was examined. Intracellular Ca2+ concentration ([Ca2+]i) was monitored with either fura-2 or fluo-4, and caffeine was used to activate the ryanodine receptor, thereby releasing Ca2+ from the sarcoplasmic reticulum (SR). NFA and NPPB significantly increased basal [Ca2+]i and attenuated the caffeine-induced increase in [Ca2+]i. These Cl- channel blockers also increased the half-time (t1/2) to peak for the caffeine-induced [Ca2+]i transient, and slowed the removal of Ca2+ from the cytosol following application of caffeine. Since DIDS and A-9-C were found to adversely affect fura-2 fluorescence, fluo-4 was used to monitor intracellular Ca2+ in studies involving these Cl- channel blockers. Both DIDS and A-9-C increased basal fluo-4 fluorescence, indicating an increase in intracellular Ca2+, and while DIDS had no significant effect on the t1/2 to peak for the caffeine-induced Ca2+ transient, it was significantly increased by A-9-C. In the absence of extracellular Ca2+, NFA significantly increased basal [Ca2+]i, suggesting that the release of Ca2+ from an intracellular store was responsible for the observed effect. Depleting the SR with the combination of caffeine and cyclopiazonic acid prevented the increase in basal [Ca2+]i induced by NFA. Additionally, incubating the cells with ryanodine also prevented the increase in basal [Ca2+]i induced by NFA. These data show that Cl- channel blockers have marked effects on Ca2+ signalling in pulmonary artery smooth muscle cells. Furthermore, examination of the NFA-induced increase in [Ca2+]i indicates that it is likely due to Ca2+ release from an intracellular store, most probably the SR. Topics: 4,4'-Diisothiocyanostilbene-2,2'-Disulfonic Acid; Animals; Anthracenes; Caffeine; Calcium; Calcium Signaling; Cells, Cultured; Chloride Channels; Male; Muscle, Smooth, Vascular; Niflumic Acid; Nitrobenzoates; Pulmonary Artery; Rats; Rats, Sprague-Dawley; Ryanodine; Sarcoplasmic Reticulum | 2003 |
Chloride ion currents contribute functionally to norepinephrine-induced vascular contraction.
Norepinephrine (NE) increases Cl- efflux from vascular smooth muscle (VSM) cells. An increase in Cl- conductance produces membrane depolarization. We hypothesized that if Cl- currents are important for agonist-induced depolarization, then interfering with cellular Cl- handling should alter contractility. Isometric contraction of rat aortic rings was studied in a bicarbonate buffer. Substitution of extracellular Cl- with 130 mM methanesulfonate (MS; 8 mM Cl-) did not cause contraction. NE- and serotonin-induced contractions were potentiated in this low-Cl- buffer, whereas responses to K+, BAY K 8644, or NE in the absence of Ca2+ were unaltered. Substitution of Cl- with I- or Br- suppressed responses to NE. Inhibition of Cl- transport with bumetanide (10(-5) M) or bicarbonate-free conditions (10 mM HEPES) inhibited NE- but not KCl-induced contraction. The Cl--channel blockers DIDS (10(-3) M), anthracene-9-carboxylic acid (10(-3) M), and niflumic acid (10(-5) M) all inhibited NE-induced contraction, whereas tamoxifen (10(-5) M) did not. Finally, disruption of sarcoplasmic reticular function with cyclopiazonic acid (10(-7) M) or ryanodine (10(-5) M) prevented the increase in the peak response to NE produced by low-Cl- buffer. We conclude that a Cl- current with a permeability sequence of I- > Br- > Cl- > MS is critical to agonist-induced contraction of VSM. Topics: 3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl ester; 4,4'-Diisothiocyanostilbene-2,2'-Disulfonic Acid; Animals; Anions; Anthracenes; Aorta, Thoracic; Bicarbonates; Cell Membrane Permeability; Chloride Channels; Chlorides; In Vitro Techniques; Indoles; Isometric Contraction; Male; Mesylates; Muscle, Smooth, Vascular; Niflumic Acid; Norepinephrine; Potassium; Rats; Rats, Sprague-Dawley; Ryanodine; Sarcoplasmic Reticulum; Serotonin; Vasoconstriction; Vasodilator Agents | 1998 |
Cyclic GMP-dependent but G-kinase-independent inhibition of Ca2+-dependent Cl- currents by NO donors in cat tracheal smooth muscle.
1. The effects of NO donors on Ca2+-dependent Cl- currents (ICl(Ca)) were investigated in freshly isolated cat tracheal myocytes using the whole-cell patch clamp technique. 2. With nystatin-perforated whole-cell recording, carbachol (CCh, >/= 1 microM) induced a transient inward current (ICCh) with a reversal potential of about -20 mV. Activation of ICCh probably occurred through the M3 muscarinic receptor, since nanomolar concentrations of 4-diphenylacetoxy-N-methylpiperidine methobromide (4-DAMP) greatly inhibited this current, while 11-(2-(diethylamino)methyl)-1-piperidinylacetyl)-5, 11-dihydro-6H-pyrido (2,3beta) (1,4)benzodiazepine-6-one (AF-DX 116) or pirenzepine at concentrations of up to 1 microM were almost ineffective. 3. Chloride channel/transporter blockers such as DIDS (100 microM), anthracene-9-carboxylic acid (9-AC, 100 microM) and niflumic acid (100 microM) greatly inhibited ICCh, but cation channel blockers, such as nifedipine (10 microM), Zn2+ (500 microM) or Gd3+ (500 microM), were without effect. 4. Activation of ICCh was strongly attenuated by pretreatment with ryanodine (4 microM) plus caffeine (10 mM). Addition of neomycin (1 mM) into the bath or inclusion of heparin (3 mg ml-1) in the pipette abolished a substantial part of ICCh. These results suggest that ICCh is ICl(Ca), which is activated by inositol 1,4,5-trisphosphate (IP3)-mediated Ca2+ release. 5. The nitric oxide donor S-nitroso-N-acetyl penicillamine (SNAP) reduced the amplitude of ICCh dose dependently (IC50, approximately 10 microM). Similar inhibition was also exerted by other types of NO donor such as glyceryl trinitrate (GTN) and (+/-)-E-methyl-2-(E-hydroxyimitol)-5-nitro-6-methoxy-3- hexeneamide (NO-R). 6. SNAP-induced ICCh inhibition was effectively antagonized by Methylene Blue (1-100 nM), and mimicked by dibutyryl cGMP (db-cGMP) (0.5-1 mM), whereas two structurally distinct types of cGMP-dependent (G)-kinase inhibitor, N-(2-aminoethyl)-5-isoquinilinesulphonamide (H-8, 2.5 microM) and KT5823 (1 microM), failed to counteract the inhibitory effects of SNAP or db-cGMP. Another G-kinase-specific inhibitor Rp-8-(para-chlorophenylthio)guanosine-3',5'-cyclic monophosphorothioate (Rp-8-pCPT-cGMPS; 1 microM) itself caused a marked reduction in ICCh. 7. SNAP (100 microM) or db-cGMP (100 microM) exhibited no inhibitory actions, when caffeine (10 mM) or photolytically released IP3 were used instead of CCh to activate the inward current. 8. These results suggest that inhibition Topics: Animals; Anthracenes; Caffeine; Calcium; Carbachol; Cats; Chloride Channels; Chlorides; Cyclic GMP; Dibutyryl Cyclic GMP; Enzyme Inhibitors; Female; GTP-Binding Proteins; Male; Membrane Potentials; Methylene Blue; Muscarinic Agonists; Muscle, Smooth; Nitric Oxide Donors; Patch-Clamp Techniques; Penicillamine; Phosphodiesterase Inhibitors; Receptor, Muscarinic M3; Receptors, Muscarinic; Ryanodine; Thionucleotides; Trachea; Zinc | 1998 |