rumenic-acid and stearic-acid

rumenic-acid has been researched along with stearic-acid* in 2 studies

Trials

1 trial(s) available for rumenic-acid and stearic-acid

ArticleYear
Effect of varying levels of fatty acids from palm oil on feed intake and milk production in Holstein cows.
    Journal of dairy science, 2007, Volume: 90, Issue:2

    To determine the optimum feeding level of fatty acids of palm oil (PALM; Energizer RP10; 86.6% palmitic acid) on milk production, lactating cows (n = 18) were randomly assigned to a treatment sequence in replicated 4 x 4 Latin squares. Animals were assigned to squares by parity (3 multiparous and 1 primiparous squares with primiparous in the incomplete square). The 4 diets were designed to provide 0, 500, 1,000, and 1,500 g of PALM per day. Cows were fed individually with feed intake measured daily. Each period lasted 16 d with milk production and composition determined the final 2 d. Milk production, milk composition and feed intake data were analyzed using the MIXED procedure of SAS. Milk yields were 30.9, 34.0, 34.2, and 34.2 kg/ d (SEM = 1.9) for the 0, 500, 1,000, and 1,500 g levels, respectively. Milk yield was increased by the addition of PALM; however, there were no differences among the levels of PALM. Milk fat percentage was also increased from 3.44% for 0 g to 3.95% (SEM = 0.17) across all levels of PALM but there were no differences among the PALM treatments. Dry matter intakes were 23.3, 26.4, 24.7, and 23.8 kg/d (SEM = 1.4) for the 0, 500, 1,000 and 1,500 g levels, respectively. The addition of PALM increased milk yield and milk fat percentage, and no adverse effects on dry matter intake were observed.

    Topics: alpha-Linolenic Acid; Animals; Cattle; Eating; Fatty Acids; Fatty Acids, Monounsaturated; Fatty Acids, Unsaturated; Female; Lactation; Linoleic Acids, Conjugated; Milk; Oleic Acid; Palm Oil; Palmitic Acid; Plant Oils; Stearic Acids

2007

Other Studies

1 other study(ies) available for rumenic-acid and stearic-acid

ArticleYear
Eicosapentaenoic acid and 3,10 dithia stearic acid inhibit the desaturation of trans-vaccenic acid into cis-9, trans-11-conjugated linoleic acid through different pathways in Caco-2 and T84 cells.
    The British journal of nutrition, 2006, Volume: 95, Issue:4

    Stearoyl-CoA desaturase (SCD) is a key enzyme that determines the composition and metabolic fate of ingested fatty acids, in particular the conversion of trans-vaccenic acid (TVA) to conjugated linoleic acid (CLA). The present study addressed the hypothesis that intestinal TVA absorption and biotransformation into CLA can be modulated by EPA and 3,10-dithia stearic acid (DSA) via altered SCD mRNA levels and desaturation indices (cis-9, trans-11-CLA:TVA and oleic acid:stearic acid ratios) in Caco-2 and T84 cells, two well-established in vitro models of the human intestinal epithelium. The study determined the effect of acute (3 h with 0.3 mm-EPA or 0.3 mm-DSA) and acute-on-chronic (1 week with 0.03 mm-EPA or -DSA, followed by respectively, 0.3 mm-EPA or -DSA for 3 h) treatments. In both cell lines, acute EPA treatment did not alter SCD desaturation indices, whereas the acute-on-chronic treatment affected these surrogate markers of SCD activity. This was associated with reduced sterol regulatory-element binding protein-1c and SCD mRNA levels. In contrast, acute and acute-on-chronic DSA treatments significantly reduced SCD desaturation indices without affecting SCD mRNA levels in Caco-2 cells. The present study on intestinal cells shows that the conversion rate of TVA to c9, t11-CLA is affected by other fatty acids present in the diet such as EPA, confirming previous observations in hepatic and mammary cell models.

    Topics: Caco-2 Cells; Cell Line; Cell Proliferation; Drug Administration Schedule; Eicosapentaenoic Acid; Epithelial Cells; Gene Expression Regulation, Enzymologic; Humans; Intestinal Mucosa; Linoleic Acids, Conjugated; Oleic Acids; RNA, Messenger; Stearic Acids; Stearoyl-CoA Desaturase

2006