rumenic-acid has been researched along with stearic-acid* in 2 studies
1 trial(s) available for rumenic-acid and stearic-acid
Article | Year |
---|---|
Effect of varying levels of fatty acids from palm oil on feed intake and milk production in Holstein cows.
To determine the optimum feeding level of fatty acids of palm oil (PALM; Energizer RP10; 86.6% palmitic acid) on milk production, lactating cows (n = 18) were randomly assigned to a treatment sequence in replicated 4 x 4 Latin squares. Animals were assigned to squares by parity (3 multiparous and 1 primiparous squares with primiparous in the incomplete square). The 4 diets were designed to provide 0, 500, 1,000, and 1,500 g of PALM per day. Cows were fed individually with feed intake measured daily. Each period lasted 16 d with milk production and composition determined the final 2 d. Milk production, milk composition and feed intake data were analyzed using the MIXED procedure of SAS. Milk yields were 30.9, 34.0, 34.2, and 34.2 kg/ d (SEM = 1.9) for the 0, 500, 1,000, and 1,500 g levels, respectively. Milk yield was increased by the addition of PALM; however, there were no differences among the levels of PALM. Milk fat percentage was also increased from 3.44% for 0 g to 3.95% (SEM = 0.17) across all levels of PALM but there were no differences among the PALM treatments. Dry matter intakes were 23.3, 26.4, 24.7, and 23.8 kg/d (SEM = 1.4) for the 0, 500, 1,000 and 1,500 g levels, respectively. The addition of PALM increased milk yield and milk fat percentage, and no adverse effects on dry matter intake were observed. Topics: alpha-Linolenic Acid; Animals; Cattle; Eating; Fatty Acids; Fatty Acids, Monounsaturated; Fatty Acids, Unsaturated; Female; Lactation; Linoleic Acids, Conjugated; Milk; Oleic Acid; Palm Oil; Palmitic Acid; Plant Oils; Stearic Acids | 2007 |
1 other study(ies) available for rumenic-acid and stearic-acid
Article | Year |
---|---|
Eicosapentaenoic acid and 3,10 dithia stearic acid inhibit the desaturation of trans-vaccenic acid into cis-9, trans-11-conjugated linoleic acid through different pathways in Caco-2 and T84 cells.
Stearoyl-CoA desaturase (SCD) is a key enzyme that determines the composition and metabolic fate of ingested fatty acids, in particular the conversion of trans-vaccenic acid (TVA) to conjugated linoleic acid (CLA). The present study addressed the hypothesis that intestinal TVA absorption and biotransformation into CLA can be modulated by EPA and 3,10-dithia stearic acid (DSA) via altered SCD mRNA levels and desaturation indices (cis-9, trans-11-CLA:TVA and oleic acid:stearic acid ratios) in Caco-2 and T84 cells, two well-established in vitro models of the human intestinal epithelium. The study determined the effect of acute (3 h with 0.3 mm-EPA or 0.3 mm-DSA) and acute-on-chronic (1 week with 0.03 mm-EPA or -DSA, followed by respectively, 0.3 mm-EPA or -DSA for 3 h) treatments. In both cell lines, acute EPA treatment did not alter SCD desaturation indices, whereas the acute-on-chronic treatment affected these surrogate markers of SCD activity. This was associated with reduced sterol regulatory-element binding protein-1c and SCD mRNA levels. In contrast, acute and acute-on-chronic DSA treatments significantly reduced SCD desaturation indices without affecting SCD mRNA levels in Caco-2 cells. The present study on intestinal cells shows that the conversion rate of TVA to c9, t11-CLA is affected by other fatty acids present in the diet such as EPA, confirming previous observations in hepatic and mammary cell models. Topics: Caco-2 Cells; Cell Line; Cell Proliferation; Drug Administration Schedule; Eicosapentaenoic Acid; Epithelial Cells; Gene Expression Regulation, Enzymologic; Humans; Intestinal Mucosa; Linoleic Acids, Conjugated; Oleic Acids; RNA, Messenger; Stearic Acids; Stearoyl-CoA Desaturase | 2006 |