rottlerin and lysophosphatidic-acid

rottlerin has been researched along with lysophosphatidic-acid* in 3 studies

Other Studies

3 other study(ies) available for rottlerin and lysophosphatidic-acid

ArticleYear
Lysophosphatidic acid modulates c-Met redistribution and hepatocyte growth factor/c-Met signaling in human bronchial epithelial cells through PKC delta and E-cadherin.
    Cellular signalling, 2007, Volume: 19, Issue:11

    Previously we demonstrated that ligation of lysophosphatidic acid (LPA) to G protein-coupled LPA receptors induces transactivation of receptor tyrosine kinases (RTKs), such as platelet-derived growth factor receptor beta (PDGF-Rbeta) and epidermal growth factor receptor (EGF-R), in primary cultures of human bronchial epithelial cells (HBEpCs). Here we examined the role of LPA on c-Met redistribution and modulation of hepatocyte growth factor (HGF)/c-Met pathways in HBEpCs. Treatment of HBEpCs with LPA-induced c-Met serine phosphorylation and redistribution to plasma membrane, while treatment with HGF-induced c-Met internalization. Pretreatment with LPA reversed HGF-induced c-Met internalization. Overexpression of dominant negative (Dn)-PKC delta or pretreatment with Rottlerin or Pertussis toxin (PTx) attenuated LPA-induced c-Met serine phosphorylation and redistribution. Co-immnuoprecipitation and immunocytochemistry showed that E-cadherin interacted with c-Met in HBEpCs. LPA treatment induced E-cadherin and c-Met complex redistribution to plasma membranes. Overexpression of Dn-PKC delta attenuated LPA-induced E-cadherin redistribution and E-cadherin siRNA attenuated LPA-induced c-Met redistribution to plasma membrane. Furthermore, pretreatment of LPA attenuated HGF-induced c-Met tyrosine phosphorylation and downstream signaling, such as Akt kinase phosphorylation and cell motility. These results demonstrate that LPA regulates c-Met function through PKC delta and E-cadherin in HBEpCs, suggesting an alternate function of the cross-talk between G-protein-coupled receptors (GPCRs) and RTKs in HBEpCs.

    Topics: Acetophenones; Benzopyrans; Bronchi; Cadherins; Cell Movement; Cells, Cultured; Endocytosis; Epithelial Cells; GTP-Binding Protein alpha Subunits, Gi-Go; Hepatocyte Growth Factor; Humans; Lysophospholipids; Models, Biological; Phosphoserine; Phosphotyrosine; Protein Binding; Protein Kinase C-delta; Protein Transport; Proto-Oncogene Proteins c-met; RNA, Small Interfering; Signal Transduction

2007
Lysophosphatidic acid-induced changes in cAMP profiles in young and senescent human fibroblasts as a clue to the ageing process.
    Mechanisms of ageing and development, 2006, Volume: 127, Issue:5

    This study attempts to elucidate the molecular mechanisms underlying the ageing-dependent cAMP profiles in human diploid fibroblasts stimulated by lysophosphatidic acid (LPA). In senescent cells, LPA-dependent Gialpha activation was reduced, with a consequent reduction in Gi-suppressed cAMP levels, without alterations in the levels of Gialpha proteins. In young cells, when Gialpha activity was inhibited by pertussis toxin pretreatment, or when its expression was blocked by siRNA, the pattern of changes in cAMP levels in response to LPA was similar to that seen in senescent cells. An increase in protein kinase C (PKC)-dependent isoforms of adenylyl cyclase (AC) types II, IV, and VI was also observed in these senescent fibroblasts. In senescent cells treated with PKC-specific inhibitors, bis-indolylmaleimide, Gö6976, rottlerin, and PKCvarepsilonV1, LPA-induced cAMP accumulation was inhibited, indicating that increased ACs in response to LPA occur via the activation of protein kinase Cs. When the expression of AC II, IV, and VI was blocked by siRNA in senescent fibroblasts, LPA-induced cAMP accumulation was also blocked. These results suggest that the senescence-associated increase of cAMP levels after LPA treatment is associated with reduced Gialpha, increased AC II, IV, and VI proteins, and PKC-dependent stimulation of their activities and provide an explanation for the age-dependent differences in cAMP-related physiological responses.

    Topics: Acetophenones; Aging; Benzopyrans; Carbazoles; Cell Line; Cellular Senescence; Cyclic AMP; Enzyme Inhibitors; Fibroblasts; Humans; Indoles; Lysophospholipids; Receptors, Lysophosphatidic Acid; RNA, Small Interfering

2006
Protein kinase Cdelta mediates lysophosphatidic acid-induced NF-kappaB activation and interleukin-8 secretion in human bronchial epithelial cells.
    The Journal of biological chemistry, 2004, Sep-24, Volume: 279, Issue:39

    Lysophosphatidic acid (LPA), a potent bioactive lipid, elicits many of its biological actions via the specific G-protein-coupled receptors LPA1, LPA2, LPA3, and LPA4. Recently, we have shown that LPA-induced transactivation of platelet-derived growth factor receptor-beta is regulated by phospholipase D2 in human bronchial epithelial cells (HBEpCs) (Wang, L., Cummings, R. J., Zhao, Y., Kazlauskas, A., Sham, J., Morris, A., Brindley, D. N., Georas, S., and Natarajan, V. (2003) J. Biol. Chem. 278, 39931-39940). Here, we report that protein kinase Cdelta (PKCdelta) mediates LPA-induced NF-kappaB transcription and interleukin-8 (IL-8) secretion in HBEpCs. Treatment of HBEpCs with LPA increased both IL-8 gene and protein expression, which was coupled to Gi and G(12/13) proteins. LPA caused a marked activation of NF-kappaB in HBEpCs as determined by IkappaB phosphorylation and of NF-kappaB nuclear translocation and a strong induction of NF-kappaB promoter-mediated luciferase activity. Furthermore, LPA-activated PKCdelta and the LPA-mediated activation of NF-kappaB and IL-8 production were attenuated by overexpression of dominant-negative PKCdelta and rottlerin. Intratracheal administration of LPA in mice resulted in elevated levels of macrophage inflammatory protein-2, a murine homolog of IL-8, and an influx of neutrophils in the bronchoalveolar lavage fluid. These results demonstrate for the first time that LPA is a potent stimulator of IL-8 production in HBEpCs, which involves PKCdelta/NF-kappaB signaling pathways.

    Topics: Acetophenones; Active Transport, Cell Nucleus; Animals; Benzopyrans; Blotting, Western; Bronchoalveolar Lavage; Cell Nucleus; Cells, Cultured; Chemokine CXCL2; Chemokines; Cytokines; DNA, Complementary; Dose-Response Relationship, Drug; Electrophoresis, Polyacrylamide Gel; Gene Expression Regulation; Humans; Inflammation; Interleukin-8; Luciferases; Lysophospholipids; Macrophages; Mice; Mice, Inbred C57BL; Microscopy, Fluorescence; NF-kappa B; Oligonucleotide Array Sequence Analysis; Phosphorylation; Protein Isoforms; Protein Kinase C; Protein Kinase C-delta; Protein Transport; Receptor, Platelet-Derived Growth Factor beta; RNA; Signal Transduction; Time Factors; Transcriptional Activation; Transfection

2004