rottlerin has been researched along with 7-benzylidenenaltrexone* in 1 studies
1 other study(ies) available for rottlerin and 7-benzylidenenaltrexone
Article | Year |
---|---|
Essential activation of PKC-delta in opioid-initiated cardioprotection.
Stimulation of the delta(1)-opioid receptor confers cardioprotection to the ischemic myocardium. We examined the role of protein kinase C (PKC) after delta-opioid receptor stimulation with TAN-67 or D-Ala(2)-D-Leu(5)-enkephalin (DADLE) in a rat model of myocardial infarction induced by a 30-min coronary artery occlusion and 2-h reperfusion. Infarct size (IS) was determined by tetrazolium staining and expressed as a percentage of the area at risk (IS/AAR). Control animals, subjected to ischemia and reperfusion, had an IS/AAR of 59.9 +/- 1.8. DADLE and TAN-67 administered before ischemia significantly reduced IS/AAR (36.9 +/- 3.9 and 36.7 +/- 4.7, respectively). The delta(1)-selective opioid antagonist 7-benzylidenenaltrexone (BNTX) abolished TAN-67-induced cardioprotection (54.4 +/- 1.3). Treatment with the PKC antagonist chelerythrine completely abolished DADLE- (61.8 +/- 3.2) and TAN-67-induced cardioprotection (55.4 +/- 4.0). Similarly, the PKC antagonist GF 109203X completely abolished TAN-67-induced cardioprotection (54.6 +/- 6.6). Immunofluorescent staining with antibodies directed against specific PKC isoforms was performed in myocardial biopsies obtained after 15 min of treatment with saline, chelerythrine, BNTX, or TAN-67 and chelerythrine or BNTX in the presence of TAN-67. TAN-67 induced the translocation of PKC-alpha to the sarcolemma, PKC-beta(1) to the nucleus, PKC-delta to the mitochondria, and PKC-epsilon to the intercalated disk and mitochondria. PKC translocation was abolished by chelerythrine and BNTX in TAN-67-treated rats. To more closely examine the role of these isoforms in cardioprotection, we utilized the PKC-delta selective antagonist rottlerin. Rottlerin abolished opioid-induced cardioprotection (48.9 +/- 4.8) and PKC-delta translocation without affecting the translocation of PKC-alpha, -beta(1), or -epsilon. These results suggest that PKC-delta is a key second messenger in the cardioprotective effects of delta(1)-opioid receptor stimulation in rats. Topics: Acetophenones; Alkaloids; Analgesics; Animals; Benzophenanthridines; Benzopyrans; Benzylidene Compounds; Enkephalin, Leucine-2-Alanine; Enzyme Activation; Enzyme Inhibitors; Heart Rate; Indoles; Ischemic Preconditioning, Myocardial; Isoenzymes; Male; Maleimides; Myocardial Infarction; Myocardial Ischemia; Myocardial Reperfusion Injury; Myocardium; Naltrexone; Narcotic Antagonists; Phenanthridines; Protein Kinase C; Protein Kinase C-delta; Quinolines; Rats; Rats, Wistar; Receptors, Opioid, delta | 2001 |