Page last updated: 2024-08-17

rotenone and piperine

rotenone has been researched along with piperine in 5 studies

Research

Studies (5)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's0 (0.00)29.6817
2010's4 (80.00)24.3611
2020's1 (20.00)2.80

Authors

AuthorsStudies
Batista-Gonzalez, A; Brunhofer, G; Fallarero, A; Gopi Mohan, C; Karlsson, D; Shinde, P; Vuorela, P1
Gao, G; Liu, J; Wang, H; Wang, X; Wu, X; Yang, H1
Chen, M; Duan, C; Gao, G; Liu, J; Lu, L; Wang, X; Wang, Y; Wu, X; Yang, H1
Das, M; Kundu, P; Sahoo, SK; Tripathy, K1
Raj, K; Sharma, S; Singh, S1

Other Studies

5 other study(ies) available for rotenone and piperine

ArticleYear
Exploration of natural compounds as sources of new bifunctional scaffolds targeting cholinesterases and beta amyloid aggregation: the case of chelerythrine.
    Bioorganic & medicinal chemistry, 2012, Nov-15, Volume: 20, Issue:22

    Topics: Acetylcholinesterase; Amyloid beta-Peptides; Benzophenanthridines; Binding Sites; Butyrylcholinesterase; Catalytic Domain; Cholinesterase Inhibitors; Humans; Isoquinolines; Kinetics; Molecular Docking Simulation; Structure-Activity Relationship

2012
Protection effect of piperine and piperlonguminine from Piper longum L. alkaloids against rotenone-induced neuronal injury.
    Brain research, 2016, 05-15, Volume: 1639

    Topics: Alkaloids; Animals; Antiparkinson Agents; Apoptosis; Autophagy; Benzodioxoles; Brain; Cell Line; Dioxolanes; Drug Evaluation, Preclinical; Humans; Male; Mice; Mitochondrial Membrane Transport Proteins; Mitochondrial Permeability Transition Pore; Neurons; Neuroprotective Agents; Parkinsonian Disorders; Phytotherapy; Piper; Piperidines; Plant Extracts; Polyunsaturated Alkamides; Random Allocation; Rats, Wistar; Rotenone

2016
Piperine induces autophagy by enhancing protein phosphotase 2A activity in a rotenone-induced Parkinson's disease model.
    Oncotarget, 2016, Sep-20, Volume: 7, Issue:38

    Topics: Alkaloids; Animals; Anti-Inflammatory Agents; Antioxidants; Autophagy; Benzodioxoles; Cell Survival; Dopaminergic Neurons; Humans; Male; Mechanistic Target of Rapamycin Complex 1; Mice; Mice, Inbred C57BL; Mitochondria; Neuroprotective Agents; Parkinson Disease, Secondary; Piperidines; Polyunsaturated Alkamides; Protein Phosphatase 2; Rats; Rotenone; Substantia Nigra

2016
Delivery of Dual Drug Loaded Lipid Based Nanoparticles across the Blood-Brain Barrier Impart Enhanced Neuroprotection in a Rotenone Induced Mouse Model of Parkinson's Disease.
    ACS chemical neuroscience, 2016, 12-21, Volume: 7, Issue:12

    Topics: Alkaloids; alpha-Synuclein; Animals; Antiparkinson Agents; Benzodioxoles; Blood-Brain Barrier; Capillary Permeability; Curcumin; Drug Delivery Systems; Drug Therapy, Combination; Liposomes; Male; Mice, Inbred BALB C; Mice, Inbred C57BL; Nanoparticles; Neuroprotective Agents; Parkinsonian Disorders; PC12 Cells; Piperidines; Polyunsaturated Alkamides; Protein Aggregation, Pathological; Random Allocation; Rats; Rotenone; Surface-Active Agents

2016
Neuroprotective Effect of Quercetin in Combination with Piperine Against Rotenone- and Iron Supplement-Induced Parkinson's Disease in Experimental Rats.
    Neurotoxicity research, 2020, Volume: 37, Issue:1

    Topics: Alkaloids; Benzodioxoles; Corpus Striatum; Dietary Supplements; Drug Synergism; Electron Transport Complex I; Electron Transport Complex IV; Glutathione; Indoles; Interleukin-1beta; Interleukin-6; Iron; Lipid Peroxidation; Neuroprotective Agents; Neurotransmitter Agents; Nitrites; Parkinson Disease, Secondary; Piperidines; Polyunsaturated Alkamides; Quercetin; Rotenone; Tumor Necrosis Factor-alpha

2020