rosavin has been researched along with rosin* in 3 studies
3 other study(ies) available for rosavin and rosin
Article | Year |
---|---|
Biotransformation of cinnamyl alcohol to rosavins by non-transformed wild type and hairy root cultures of Rhodiola kirilowii.
Non-transformed wild type (NTWT) and hairy root cultures of Rhodiola kirilowii were grown in medium supplemented with 2.5 mM cinnamyl alcohol as a precursor and/or sucrose (1 %) on the day of inoculation or on the 14th day of culture. Rosarin, rosavin, and rosin were produced by NTWT root culture but only rosarin and rosavin by hairy roots. Approximately 80 and 95 % of the glycosides were released into the medium for NTWT and hairy root cultures, respectively. The highest rosavin yield, 505 ± 106 mg/l, was in hairy root culture when cinnamyl alcohol was applied on the day of inoculation with the addition of sucrose on the 14th day of culture. For rosin production, supplementation with cinnamyl alcohol alone on day 14 was more favourable with the highest amount 74 ± 10 mg/l in NTWT root culture. Only traces of rosarin were detected. Topics: Biotransformation; Cells, Cultured; Culture Media; Disaccharides; Plant Roots; Propanols; Resins, Plant; Rhodiola; Sucrose | 2014 |
Simultaneous quantification of polyherbal formulations containing Rhodiola rosea L. and Eleutherococcus senticosus Maxim. using rapid resolution liquid chromatography (RRLC).
An RRLC method capable of simultaneous identification and rapid quantification of six biologically active compounds (salidroside, tyrosol, rosarin, rosavin, rosin, rosiridin) in Rhodiola rosea L. and two active compounds (eleutheroside B and eleutheroside E) in Eleutherococcus senticosus Maxim. was developed. The chromatographic analyses were performed on a reversed phase Phenomenex C18 (2)-HST column at 40°C with a neutral mobile phase (purified water and acetonitrile) gradient system at a flow rate of 1.0ml/min and UV detection at 205 and 220nm simultaneously. Baseline separation of eight active compounds was achieved within 8min. This developed method provides good linearity (R>0.9997), precision (RSD<1.99%) and recovery of the bioactive compounds. The RRLC method developed is capable of controlling the quality of R. rosea and E. senticosus raw herbs, commercial extracts, as well as polyherbal formulations containing R. rosea and E. senticosus as ingredients. This RRLC method is accurate and sensitive; in addition, it greatly increases sample analysis throughput with reduced analysis time, which is suitable for routine quality control analysis. Topics: Calibration; Chemistry Techniques, Analytical; Chemistry, Pharmaceutical; Chromatography; Chromatography, Liquid; Disaccharides; Eleutherococcus; Glucosides; Lignans; Phenols; Phenylethyl Alcohol; Phenylpropionates; Plant Extracts; Plant Preparations; Quality Control; Reproducibility of Results; Resins, Plant; Rhodiola | 2011 |
Rapid resolution liquid chromatography (RRLC) analysis for quality control of Rhodiola rosea roots and commercial standardized products.
A simple, sensitive and reliable reversed phase Rapid Resolution Liquid Chromatography (RRLC) method was developed and validated for six biologically active compounds (salidroside, tyrosol, rosarin, rosavin, rosin and rosiridin) in Rhodiola rosea L. roots and powder extracts. The method uses a Phenomenex C18 (2)-HST column at 40 degrees C with a neutral gradient system mobile phase (H20 and acetonitrile), a flow rate of 1.0 mL/min, and UV detection wavelengths set at 205 and 254 nm, simultaneously. Baseline separation of the six active compounds was achieved within 8 minutes. The average percentages of rosavins (rosarin, rosavin, and rosin) in authentic R. rosea roots and root powder extracts were quantitatively determined and a characteristic R. rosea roots RRLC profile was established. The RRLC method is accurate and sensitive; in addition, it effectively increases the sample analysis throughput compared with conventional HPLC. Topics: Chromatography, High Pressure Liquid; Disaccharides; Glucosides; Phenols; Phenylethyl Alcohol; Plant Extracts; Plant Roots; Quality Control; Reference Standards; Resins, Plant; Rhodiola | 2011 |