Page last updated: 2024-08-25

ropivacaine and quinine

ropivacaine has been researched along with quinine in 4 studies

Research

Studies (4)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's2 (50.00)29.6817
2010's2 (50.00)24.3611
2020's0 (0.00)2.80

Authors

AuthorsStudies
Lombardo, F; Obach, RS; Waters, NJ1
Chen, L; He, Z; Li, H; Liu, J; Liu, X; Sui, X; Sun, J; Wang, Y; Zhang, W1
Cantin, LD; Chen, H; Kenna, JG; Noeske, T; Stahl, S; Walker, CL; Warner, DJ1
Bedoya, M; Decher, N; González, W; Kiper, AK; Ramírez, D; Rinné, S1

Reviews

1 review(s) available for ropivacaine and quinine

ArticleYear
TASK Channels Pharmacology: New Challenges in Drug Design.
    Journal of medicinal chemistry, 2019, 11-27, Volume: 62, Issue:22

    Topics: Animals; Drug Design; Drug Discovery; Humans; Potassium Channel Blockers; Potassium Channels; Potassium Channels, Tandem Pore Domain

2019

Other Studies

3 other study(ies) available for ropivacaine and quinine

ArticleYear
Trend analysis of a database of intravenous pharmacokinetic parameters in humans for 670 drug compounds.
    Drug metabolism and disposition: the biological fate of chemicals, 2008, Volume: 36, Issue:7

    Topics: Blood Proteins; Half-Life; Humans; Hydrogen Bonding; Infusions, Intravenous; Pharmacokinetics; Protein Binding

2008
Prediction of volume of distribution values in human using immobilized artificial membrane partitioning coefficients, the fraction of compound ionized and plasma protein binding data.
    European journal of medicinal chemistry, 2009, Volume: 44, Issue:11

    Topics: Blood Proteins; Chemistry, Physical; Computer Simulation; Humans; Membranes, Artificial; Models, Biological; Pharmaceutical Preparations; Protein Binding; Tissue Distribution

2009
Mitigating the inhibition of human bile salt export pump by drugs: opportunities provided by physicochemical property modulation, in silico modeling, and structural modification.
    Drug metabolism and disposition: the biological fate of chemicals, 2012, Volume: 40, Issue:12

    Topics: Animals; ATP Binding Cassette Transporter, Subfamily B, Member 11; ATP-Binding Cassette Transporters; Bile Acids and Salts; Cell Line; Chemical and Drug Induced Liver Injury; Humans; Quantitative Structure-Activity Relationship

2012