ro3244794 and nimesulide

ro3244794 has been researched along with nimesulide* in 2 studies

Other Studies

2 other study(ies) available for ro3244794 and nimesulide

ArticleYear
Estrogen protects the heart from ischemia-reperfusion injury via COX-2-derived PGI2.
    Journal of cardiovascular pharmacology, 2008, Volume: 52, Issue:3

    There is an accumulating body of data to suggest that estrogen mediates its cardioprotective effects via cyclooxygenase activation and synthesis of prostaglandins (PG), specifically PGI2. We hypothesized that inhibition of COX-2 would prevent estrogen's cardioprotective effects after myocardial ischemia-reperfusion. Acute treatment with 17beta-estradiol (E2; 20 microg/rabbit) increased COX-2 protein expression and activity in the myocardium. To determine the effects of COX-2 inhibition on infarct size after E2 treatment, New Zealand white rabbits were anesthetized and administered the COX-2 inhibitor nimesulide (5 mg/kg) or vehicle intravenously 30 minutes before an intravenous injection of E2. Thirty minutes after estrogen treatment, the coronary artery was occluded for 30 minutes followed by 4 hours of reperfusion. E2 significantly decreased infarct size as a percent of area at risk when compared to vehicle (18.9 +/- 3.1 versus 47.0 +/- 4.1; P < 0.001). Pretreatment with nimesulide nullified the infarct size sparing effect of E2 (55.8 +/- 5.6). Treatment with the PGI2 receptor antagonist RO3244794 also abolished the protective effects of E2 (45.3 +/- 4.5). The results indicate that estrogen protects the myocardium from ischemia-reperfusion injury through increased production of COX-2-derived PGI2. The data indicate that selective COX-2 inhibitors might counteract the potential cytoprotective effects of estrogen in premenopausal or postmenopausal women.

    Topics: Animals; Benzofurans; Cyclooxygenase 2; Cyclooxygenase 2 Inhibitors; Epoprostenol; Estradiol; Estrogens; Gene Expression Regulation, Enzymologic; Male; Myocardial Reperfusion Injury; Propionates; Rabbits; Sulfonamides

2008
Effects of cyclooxygenase inhibition on canine coronary artery blood flow and thrombosis.
    American journal of physiology. Heart and circulatory physiology, 2008, Volume: 294, Issue:1

    This study was designed to determine the effect of inhibitors of cyclooxygenase (COX)-1, COX-2, and the nonselective COX inhibitor naproxen on coronary vasoactivity and thrombogenicity under baseline and lipopolysaccharide (LPS)-induced inflammatory conditions. We hypothesize that endothelial COX-1 is the primary COX isoform in the canine normal coronary artery, which mediates arachidonic acid (AA)-induced vasodilatation. However, COX-2 can be induced and overexpressed by inflammatory mediators and becomes the major local COX isoform responsible for the production of antithrombotic prostaglandins during systemic inflammation. The interventions included the selective COX-1 inhibitor SC-560 (0.3 mg/kg iv), the selective COX-2 inhibitor nimesulide (5 mg/kg iv), or the nonselective COX inhibitor naproxen (3 mg/kg iv). The selective prostacyclin (IP) receptor antagonist RO-3244794 (RO) was used as an investigational tool to delineate the role of prostacyclin (PGI(2)) in modulating vascular reactivity. AA-induced vasodilatation of the left circumflex coronary artery was suppressed to a similar extent by each of the COX inhibitors and RO. The data suggest that AA-induced vasodilatation in the normal coronary artery is mediated by a single COX isoform, the constitutive endothelial COX-1, which is reported to be susceptible to COX-2 inhibitors. The effect of the COX inhibitors on thrombus formation was evaluated in a model of carotid artery thrombosis secondary to electrolytic-induced vessel wall injury. Pretreatment with LPS (0.5 mg/kg iv) induced a systemic inflammatory response and prolonged the time-to-occlusive thrombus formation, which was reduced in the LPS-treated animals by the administration of nimesulide. In contrast, neither SC-560 nor naproxen influenced the time to thrombosis in the animals pretreated with LPS. The data are of significance in view of reported adverse cardiovascular events observed in clinical trials involving the use of selective COX-2 inhibitors, thereby suggesting that the endothelial constitutive COX-1 and the inducible vascular COX-2 serve important functions in maintaining vascular homeostasis.

    Topics: Acetylcholine; Animals; Arachidonic Acid; Benzofurans; Carotid Arteries; Coronary Circulation; Coronary Vessels; Cyclooxygenase 1; Cyclooxygenase 2; Cyclooxygenase 2 Inhibitors; Cyclooxygenase Inhibitors; Disease Models, Animal; Dogs; Dose-Response Relationship, Drug; Electric Stimulation; Epoprostenol; Inflammation; Ligation; Lipopolysaccharides; Naproxen; Platelet Aggregation; Propionates; Pyrazoles; Receptors, Epoprostenol; Sulfonamides; Thrombosis; Time Factors; Vasodilation; Vasodilator Agents

2008