rivastigmine has been researched along with propidium iodide in 5 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 4 (80.00) | 29.6817 |
2010's | 1 (20.00) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
Andrisano, V; Banzi, R; Bartolini, M; Bergamini, C; Bolognesi, ML; Cattaneo, A; Cavalli, A; Fato, R; Hrelia, P; Lenaz, G; Melchiorre, C; Minarini, A; Recanatini, M; Rosini, M; Tarozzi, A; Tumiatti, V | 1 |
Bolognesi, ML; Cavalli, A; Melchiorre, C; Minarini, A; Recanatini, M; Rosini, M; Tumiatti, V | 1 |
Chen, H; Fu, W; Li, W; Lu, M; Qiu, Z; Sheng, W; Tang, Y; Wang, H; Wang, X; Xia, Z; Xie, Q; Zhang, W; Zhou, W; Zhu, X | 1 |
Agnusdei, M; Belinskaya, T; Borriello, M; Brindisi, M; Butini, S; Campiani, G; Catalanotti, B; Fattorusso, C; Fiorini, I; Gemma, S; Nacci, V; Novellino, E; Panico, A; Persico, M; Ros, S; Saxena, A | 1 |
Azzouz, R; Bohn, P; Gembus, V; Levacher, V; Papamicaël, C; Peauger, L; Sopková-de Oliveira Santos, J; Ţînţaş, ML | 1 |
1 review(s) available for rivastigmine and propidium iodide
Article | Year |
---|---|
Multi-target-directed ligands to combat neurodegenerative diseases.
Topics: Acetylcholinesterase; Alzheimer Disease; Amyloid beta-Peptides; Antioxidants; Binding Sites; Calcium Channel Blockers; Chelating Agents; Cholinesterase Inhibitors; Humans; Huntington Disease; Ligands; Multiple Sclerosis; Neurodegenerative Diseases; Neurofibrillary Tangles; Neurotransmitter Agents; Parkinson Disease; Plaque, Amyloid | 2008 |
4 other study(ies) available for rivastigmine and propidium iodide
Article | Year |
---|---|
Novel class of quinone-bearing polyamines as multi-target-directed ligands to combat Alzheimer's disease.
Topics: Acetylcholinesterase; Alzheimer Disease; Amyloid beta-Peptides; Antioxidants; Binding Sites; Butyrylcholinesterase; Cell Line; Cholinesterase Inhibitors; Humans; Ligands; Models, Molecular; NAD(P)H Dehydrogenase (Quinone); Oxidative Stress; Polyamines; Protein Binding; Quinones; Reactive Oxygen Species; Structure-Activity Relationship; Substrate Specificity | 2007 |
Bis-(-)-nor-meptazinols as novel nanomolar cholinesterase inhibitors with high inhibitory potency on amyloid-beta aggregation.
Topics: Acetylcholinesterase; Amyloid beta-Peptides; Animals; Binding Sites; Butyrylcholinesterase; Cell Line, Tumor; Cell Survival; Cholinesterase Inhibitors; Drug Design; Enzyme Activation; Humans; Meptazinol; Mice; Models, Molecular; Molecular Structure; Stereoisomerism; Structure-Activity Relationship; Toxicity Tests | 2008 |
Exploiting protein fluctuations at the active-site gorge of human cholinesterases: further optimization of the design strategy to develop extremely potent inhibitors.
Topics: Acetylcholinesterase; Binding Sites; Butyrylcholinesterase; Cholinesterase Inhibitors; Computational Biology; Crystallography, X-Ray; Drug Design; Humans; Models, Molecular; Protein Conformation; Structure-Activity Relationship; Tacrine | 2008 |
Donepezil-Based Central Acetylcholinesterase Inhibitors by Means of a "Bio-Oxidizable" Prodrug Strategy: Design, Synthesis, and in Vitro Biological Evaluation.
Topics: Acetylcholinesterase; Alzheimer Disease; Amyloid; Animals; Cholinesterase Inhibitors; Donepezil; Drug Design; Female; Humans; Indans; Mice; Molecular Docking Simulation; Piperidines; Prodrugs | 2017 |