rivastigmine has been researched along with piroxicam in 14 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 1 (7.14) | 29.6817 |
2010's | 11 (78.57) | 24.3611 |
2020's | 2 (14.29) | 2.80 |
Authors | Studies |
---|---|
Carrupt, PA; Crivori, P; Cruciani, G; Testa, B | 1 |
Deng, Y; Li, Y; Liu, Q; Qiang, X; Sang, Z; Tan, Z; Xiao, G | 1 |
Chen, M; Hu, C; Suzuki, A; Thakkar, S; Tong, W; Yu, K | 1 |
Aitken, L; Benek, O; Dohnal, V; Dolezal, R; Guest, P; Gunn-Moore, F; Hroch, L; Janockova, J; Kuca, K; Musil, K; Musilek, K; Smith, TK; Soukup, O | 1 |
Bajda, M; Gobec, S; Godyń, J; Janockova, J; Jończyk, J; Knez, D; Korabecny, J; Malawska, B; Mika, K; Panek, D; Soukup, O; Wichur, T; Więckowska, A | 1 |
Cao, Z; Deng, Y; Li, Y; Luo, L; Qiang, X; Sang, Z; Su, F; Xiao, G; Xu, R; Yang, X; Zheng, Y | 1 |
Andrisano, V; Apperley, KYP; Bartolini, M; Baschieri, A; Basso, M; Chen, HH; De Simone, A; Guardigni, M; Keillor, JW; Kobrlova, T; Milelli, A; Montanari, S; Soukup, O; Valgimigli, L | 1 |
Cao, Z; Deng, Y; Li, Y; Liu, H; Qiang, X; Song, Q; Tan, Z; Tian, C; Yang, Z | 1 |
Bolognesi, ML; da Costa Nunes, JL; de Oliveira Miranda, C; de Oliveira, AS; Gandini, A; Gervasoni, S; Jung, M; Kobrlova, T; Massenzio, F; Monti, B; Petralla, S; Rossi, M; Senger, J; Simões Heyn Roth Cardoso, G; Soares Romeiro, LA; Soukup, O; Vistoli, G | 1 |
Liu, W; Sang, Z; Shi, J; Tan, Z; Wang, K | 1 |
Liu, W; Sang, Z; Shi, J; Tan, Z; Wang, K; Zhang, P | 1 |
Benek, O; Benkova, M; Dolezal, R; Hepnarova, V; Hrabinova, M; Janockova, J; Jun, D; Kobrlova, T; Korabecny, J; Kucera, T; Mezeiova, E; Prchal, L; Sobolova, K; Soukup, O | 1 |
Jiang, X; Liu, XH; Shi, J; Tang, W; Wang, S; Wu, C; Xu, Y; Zha, L; Zhang, J; Zhang, Z; Zuo, J | 1 |
Agrawal, R; Assaiya, A; Banerjee, T; Jain, N; Kumar, A; Manivannan, E; Mufti, I; Parmar, HS; Tiwari, S | 1 |
1 review(s) available for rivastigmine and piroxicam
Article | Year |
---|---|
DILIrank: the largest reference drug list ranked by the risk for developing drug-induced liver injury in humans.
Topics: Chemical and Drug Induced Liver Injury; Databases, Factual; Drug Labeling; Humans; Pharmaceutical Preparations; Risk | 2016 |
13 other study(ies) available for rivastigmine and piroxicam
Article | Year |
---|---|
Predicting blood-brain barrier permeation from three-dimensional molecular structure.
Topics: Blood-Brain Barrier; Databases, Factual; Models, Chemical; Molecular Conformation; Multivariate Analysis; Permeability; Pharmaceutical Preparations; Pharmacokinetics; Structure-Activity Relationship | 2000 |
Multifunctional scutellarin-rivastigmine hybrids with cholinergic, antioxidant, biometal chelating and neuroprotective properties for the treatment of Alzheimer's disease.
Topics: Acetylcholinesterase; Alzheimer Disease; Animals; Antioxidants; Apigenin; Blood-Brain Barrier; Butyrylcholinesterase; Carbamates; Cell Line; Chelating Agents; Cholinesterase Inhibitors; Cognition; Glucuronates; Humans; Mice; Molecular Docking Simulation; Neuroprotective Agents; Rats | 2015 |
Design, synthesis and in vitro evaluation of benzothiazole-based ureas as potential ABAD/17β-HSD10 modulators for Alzheimer's disease treatment.
Topics: 3-Hydroxyacyl CoA Dehydrogenases; Alzheimer Disease; Animals; Benzothiazoles; Cell Survival; CHO Cells; Cricetulus; Dose-Response Relationship, Drug; Drug Design; Enzyme Inhibitors; Humans; Molecular Structure; Structure-Activity Relationship; Urea | 2016 |
Design, synthesis and biological evaluation of new phthalimide and saccharin derivatives with alicyclic amines targeting cholinesterases, beta-secretase and amyloid beta aggregation.
Topics: Amines; Amyloid beta-Peptides; Amyloid Precursor Protein Secretases; Binding Sites; Blood-Brain Barrier; Cholinesterases; Drug Delivery Systems; Drug Design; Enzyme Inhibitors; Humans; Inhibitory Concentration 50; Molecular Structure; Peptide Fragments; Phthalimides; Protein Aggregation, Pathological; Protein Binding; Saccharin | 2017 |
Design, synthesis and biological evaluation of 4'-aminochalcone-rivastigmine hybrids as multifunctional agents for the treatment of Alzheimer's disease.
Topics: Acetylcholinesterase; Alzheimer Disease; Animals; Blood-Brain Barrier; Chalcones; Cholinesterase Inhibitors; Dose-Response Relationship, Drug; Drug Design; Humans; Molecular Docking Simulation; Molecular Structure; Monoamine Oxidase; Monoamine Oxidase Inhibitors; Rivastigmine; Structure-Activity Relationship; Swine | 2017 |
Hydroxy-substituted trans-cinnamoyl derivatives as multifunctional tools in the context of Alzheimer's disease.
Topics: Alzheimer Disease; Animals; Cinnamates; Dose-Response Relationship, Drug; Free Radical Scavengers; Glycogen Synthase Kinase 3 beta; Molecular Structure; Stereoisomerism; Structure-Activity Relationship | 2017 |
Discovery of novel 2,5-dihydroxyterephthalamide derivatives as multifunctional agents for the treatment of Alzheimer's disease.
Topics: Acetylcholinesterase; Alzheimer Disease; Amyloid beta-Peptides; Animals; Anti-Inflammatory Agents, Non-Steroidal; Antioxidants; Butyrylcholinesterase; Chelating Agents; Cholinesterase Inhibitors; Dose-Response Relationship, Drug; Drug Discovery; Humans; Models, Molecular; Molecular Structure; Peptide Fragments; Phthalimides; Protein Aggregates; Structure-Activity Relationship | 2018 |
Novel Sustainable-by-Design HDAC Inhibitors for the Treatment of Alzheimer's Disease.
Topics: | 2019 |
Design, synthesis, in-silico and biological evaluation of novel chalcone-O-carbamate derivatives as multifunctional agents for the treatment of Alzheimer's disease.
Topics: Acetylcholinesterase; Alzheimer Disease; Amyloid beta-Peptides; Animals; Blood-Brain Barrier; Butyrylcholinesterase; Chalcones; Cholinesterase Inhibitors; Dose-Response Relationship, Drug; Drug Design; Eels; Female; Horses; Humans; Male; Maze Learning; Mice; Mice, Inbred Strains; Models, Molecular; Molecular Structure; Monoamine Oxidase; Monoamine Oxidase Inhibitors; Peptide Fragments; Protein Aggregates; Rats; Structure-Activity Relationship | 2019 |
Design, synthesis, in-silico and biological evaluation of novel chalcone derivatives as multi-function agents for the treatment of Alzheimer's disease.
Topics: Alzheimer Disease; Amyloid beta-Peptides; Animals; Butyrylcholinesterase; Chalcone; Cholinesterase Inhibitors; Drug Design; Eels; Horses; Humans; Monoamine Oxidase; Monoamine Oxidase Inhibitors; Neuroprotective Agents; Peptide Fragments; Protein Aggregates | 2019 |
Discovery of novel berberine derivatives with balanced cholinesterase and prolyl oligopeptidase inhibition profile.
Topics: Berberine; Blood-Brain Barrier; Cell Line, Tumor; Cholinesterase Inhibitors; Cholinesterases; Drug Design; Humans; Prolyl Oligopeptidases | 2020 |
Novel cannabidiol-carbamate hybrids as selective BuChE inhibitors: Docking-based fragment reassembly for the development of potential therapeutic agents against Alzheimer's disease.
Topics: Acetylcholinesterase; Alzheimer Disease; Animals; Binding Sites; Blood-Brain Barrier; Butyrylcholinesterase; Cannabidiol; Carbamates; Cell Line, Tumor; Cell Survival; Cholinesterase Inhibitors; Drug Design; Humans; Kinetics; Maze Learning; Mice; Mice, Inbred ICR; Molecular Docking Simulation; Neuroprotective Agents; Structure-Activity Relationship | 2021 |
Inhibition of Aβ(1-42)Oligomerization, Fibrillization and Acetylcholinesterase Activity by Some Anti-Inflammatory Drugs: An in vitro Study.
Topics: Acetylcholinesterase; Amyloid; Amyloid beta-Peptides; Anti-Inflammatory Agents, Non-Steroidal; Antioxidants; Aspirin; Butylated Hydroxyanisole; Celecoxib; Dexamethasone; Diclofenac; Indomethacin; Methylene Blue; Nitric Oxide; Peptide Fragments; Piroxicam; Rivastigmine; Singlet Oxygen | 2017 |