Page last updated: 2024-08-16

rivastigmine and physovenine

rivastigmine has been researched along with physovenine in 3 studies

Research

Studies (3)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's2 (66.67)29.6817
2010's1 (33.33)24.3611
2020's0 (0.00)2.80

Authors

AuthorsStudies
Brossi, A; Greig, NH; Holloway, HW; Kulkarni, SS; Lahiri, DK; Luo, W; Parrish, DA; Shafferman, A; Tweedie, D; Yu, QS1
Chaudhaery, SS; Nath, C; Nazir, A; Roy, KK; Sammi, SR; Saxena, AK; Saxena, G; Shakya, N1
Barak, D; Greig, NH; Ordentlich, A; Shafferman, A; Stein, D; Yu, QS1

Other Studies

3 other study(ies) available for rivastigmine and physovenine

ArticleYear
Inhibition of human acetyl- and butyrylcholinesterase by novel carbamates of (-)- and (+)-tetrahydrofurobenzofuran and methanobenzodioxepine.
    Journal of medicinal chemistry, 2006, Apr-06, Volume: 49, Issue:7

    Topics: Acetophenones; Acetylcholinesterase; Animals; Benzofurans; Butyrylcholinesterase; Carbamates; Cholinesterase Inhibitors; Crystallography, X-Ray; Furans; Heterocyclic Compounds, 3-Ring; Humans; Models, Molecular; Oxepins; Stereoisomerism; Structure-Activity Relationship; Torpedo

2006
Novel carbamates as orally active acetylcholinesterase inhibitors found to improve scopolamine-induced cognition impairment: pharmacophore-based virtual screening, synthesis, and pharmacology.
    Journal of medicinal chemistry, 2010, Sep-09, Volume: 53, Issue:17

    Topics: Acetylcholinesterase; Administration, Oral; Animals; Avoidance Learning; Caenorhabditis elegans; Carbamates; Catalytic Domain; Cholinesterase Inhibitors; Databases, Factual; Hydrogen Bonding; Hydrophobic and Hydrophilic Interactions; Male; Mice; Models, Molecular; Nootropic Agents; Quantitative Structure-Activity Relationship; Scopolamine

2010
Accommodation of physostigmine and its analogues by acetylcholinesterase is dominated by hydrophobic interactions.
    The Biochemical journal, 2009, Jan-01, Volume: 417, Issue:1

    Topics: Acetylcholinesterase; Binding Sites; Catalysis; Cholinesterase Inhibitors; Humans; Hydrophobic and Hydrophilic Interactions; Kinetics; Models, Molecular; Molecular Structure; Mutation; Phenylcarbamates; Physostigmine; Protein Binding; Pyridostigmine Bromide; Rivastigmine; Structure-Activity Relationship

2009