ritonavir has been researched along with verlukast* in 4 studies
4 other study(ies) available for ritonavir and verlukast
Article | Year |
---|---|
The antiretroviral protease inhibitor ritonavir accelerates glutathione export from cultured primary astrocytes.
Antiretroviral protease inhibitors are a class of important drugs that are used for the treatment of human immunodeficiency virus infections. Among those compounds, ritonavir is applied frequently in combination with other antiretroviral protease inhibitors, as it has been reported to boost their therapeutic efficiency. To test whether ritonavir affects the viability and the glutathione (GSH) metabolism of brain cells, we have exposed primary astrocyte cultures to this protease inhibitor. Application of ritonavir in low micromolar concentrations did not compromise cell viability, but caused a time- and concentration-dependent loss of GSH from the cells which was accompanied by a matching increase in the extracellular GSH content. Half-maximal effects were observed for ritonavir in a concentration of 3 μM. The ritonavir-induced stimulated GSH export from astrocytes was completely prevented by MK571, an inhibitor of the multidrug resistance protein 1. In addition, continuous presence of ritonavir was essential to maintain the stimulated GSH export, since removal of ritonavir terminated the stimulated GSH export. Ritonavir was more potent to stimulate GSH export from astrocytes than the antiretroviral protease inhibitors indinavir and nelfinavir, but combinations of ritonavir with indinavir or nelfinavir did not further stimulate astrocytic GSH export compared to a treatment with ritonavir alone. The strong effects of ritonavir and other antiretroviral protease inhibitors on the GSH metabolism of astrocytes suggest that a chronic treatment of patients with such compounds may affect their brain GSH metabolism. Topics: Animals; Astrocytes; ATP Binding Cassette Transporter, Subfamily B, Member 1; Cell Survival; Cells, Cultured; Drug Combinations; Glutathione; HIV Protease Inhibitors; Indinavir; Nelfinavir; Propionates; Quinolines; Rats; Rats, Wistar; Ritonavir | 2013 |
Attenuation of intestinal absorption by major efflux transporters: quantitative tools and strategies using a Caco-2 model.
Efflux transporters expressed in the apical membrane of intestinal enterocytes have been implicated in drug oral absorption. The current study presents a strategy and tools to quantitatively predict the impact of efflux on oral absorption for new chemical entities (NCEs) in early drug discovery. Sixty-three marketed drugs with human absorption data were evaluated in the Caco-2 bidirectional permeability assay and subjected to specific transporter inhibition. A four-zone graphical model was developed from apparent permeability and efflux ratios to quickly identify compounds whose efflux activity may distinctly influence human absorption. NCEs in "zone 4" will probably have efflux as a barrier for oral absorption and further mechanistic studies are required. To interpret mechanistic results, we introduced a new quantitative substrate classification parameter, transporter substrate index (TSI). TSI allowed more flexibility and considered both in vitro and in vivo outcomes. Its application ranged from addressing the challenge of overlapping substrate specificity to projecting the role of transporter(s) on exposure or potential drug-drug interaction risk. The potential impact of efflux transporters associated with physicochemical properties on drug absorption is discussed in the context of TSI and also the previously reported absorption quotient. In this way, the chemistry strategy may be differentially focused on passive permeability or efflux activity or both. Topics: Adenosine; ATP Binding Cassette Transporter, Subfamily B; ATP Binding Cassette Transporter, Subfamily G, Member 2; ATP-Binding Cassette Sub-Family B Member 4; ATP-Binding Cassette Transporters; Biological Transport; Caco-2 Cells; Chromatography, Liquid; Dibenzocycloheptenes; Diketopiperazines; Drug Discovery; Heterocyclic Compounds, 4 or More Rings; Humans; Intestinal Absorption; Mass Spectrometry; Models, Biological; Neoplasm Proteins; Pharmaceutical Preparations; Predictive Value of Tests; Propionates; Quinolines; Substrate Specificity | 2011 |
Up-regulation of P-glycoprotein by HIV protease inhibitors in a human brain microvessel endothelial cell line.
A major concern regarding the chronic administration of antiretroviral drugs is the potential for induction of drug efflux transporter expression (i.e., P-glycoprotein, P-gp) at tissue sites that can significantly affect drug distribution and treatment efficacy. Previous data have shown that the inductive effect of human immunodeficiency virus protease inhibitors (PIs) is mediated through the human orphan nuclear receptor, steroid xenobiotic receptor (SXR or hPXR). The objectives of this study were to investigate transport and inductive properties on efflux drug transporters of two PIs, atazanavir and ritonavir, at the blood-brain barrier by using a human brain microvessel endothelial cell line, hCMEC/D3. Transport properties of PIs by the drug efflux transporters P-gp and multidrug resistance protein 1 (MRP1) were assessed by measuring the cellular uptake of (3)H-atazanavir or (3)H-ritonavir in P-gp and MRP1 overexpressing cells as well as hCMEC/D3. Whereas the P-gp inhibitor, PSC833, increased atazanavir and ritonavir accumulation in hCMEC/D3 cells by 2-fold, the MRP inhibitor MK571 had no effect. P-gp, MRP1, and hPXR expression and localization were examined by Western blot analysis and immunogold cytochemistry at the electron microscope level. Treatment of hCMEC/D3 cells for 72 hr with rifampin or SR12813 (two well-established hPXR ligands) or PIs (atazanavir or ritonavir) resulted in an increase in P-gp expression by 1.8-, 6-, and 2-fold, respectively, with no effect observed for MRP1 expression. In hCMEC/D3 cells, cellular accumulation of these PIs appears to be primarily limited by P-gp efflux activity. Long-term exposure of atazanavir or ritonavir to brain microvessel endothelium may result in further limitations in brain drug permeability as a result of the up-regulation of P-gp expression and function. Topics: Atazanavir Sulfate; ATP Binding Cassette Transporter, Subfamily B, Member 1; Blood-Brain Barrier; Brain; Cell Line; Cyclosporins; Diphosphonates; Endothelium, Vascular; HIV Protease Inhibitors; Humans; Microvessels; Oligopeptides; Propionates; Pyridines; Quinolines; Rifampin; Ritonavir; Tritium; Up-Regulation | 2009 |
Apparent active transport of MDMA is not mediated by P-glycoprotein: a comparison with MDCK and Caco-2 monolayers.
Amphetamines and their methylenedioxy derivatives generically display similar behavioral, physiologic and toxic effects. Inconsistent pharmacokinetic and toxicity data for methylenedioxymethamphetamine (MDMA) may suggest that active drug transporters are interacting with these compounds, and thus altering drug absorption and tissue distribution. In vitro models of CNS accumulation and intestinal drug transport were used to assess efflux transport of MDMA. Madin-Darby kidney cell epithelial (MDCK) monolayers displayed a 4-fold increase in accumulation in the basolateral to apical orientation relative to the apical to basolateral orientation, although no differential accumulation was noted between MDCK-WT and MDCK-MDR1 monolayers. Caco-2 monolayers demonstrated an approximate 2-fold increase in accumulation of MDMA. Exposure of various inhibitors of active drug transporters demonstrated mixed results; ritonavir, progesterone and indomethacin produced an approximately 50% reduction of MDMA transport, while verapamil, MK-571 and probenecid had no effect. Based on these data, it is concluded that MDMA efflux is mediated via the activity of a transporter distinct from P-glycoprotein. The possible inhibitory effects of amphetamines on rhodamine-123 transport were also assessed. MDMA, methylenedioxyamphetamine, amphetamine and methamphetamine, at physiologically relevant concentrations, did not significantly alter the transport of rhodamine-123 in Caco-2 monolayers or the LS180 cell line, suggesting that these compounds do not alter the function of P-glycoprotein. Topics: Animals; ATP Binding Cassette Transporter, Subfamily B, Member 1; Biological Transport; Caco-2 Cells; Cell Line; Dogs; Humans; Indomethacin; N-Methyl-3,4-methylenedioxyamphetamine; Probenecid; Progesterone; Propionates; Quinolines; Rhodamine 123; Ritonavir; Verapamil | 2006 |