ritonavir and favipiravir

ritonavir has been researched along with favipiravir* in 45 studies

Reviews

24 review(s) available for ritonavir and favipiravir

ArticleYear
A systematic review and Bayesian network meta-analysis for comparative safety assessment of favipiravir interventions in hospitalized COVID-19 patients.
    Journal of infection in developing countries, 2022, 09-30, Volume: 16, Issue:9

    COVID-19 is a coronavirus-based infectious illness that was first detected at the end of 2019 in Wuhan, China. The novel virus induces severe acute respiratory syndrome (SARS-CoV-2) and has spread globally, resulting in an ongoing pandemic. There is still a lack of evidence for direct comparison of favipiravir therapy. Network meta-analysis (NMA), may incorporate direct and indirect comparisons in a pooled computation while depending on strong assumptions and premises. This study provides evidence-based recommendations on the safety of currently used clinical pharmacological treatments compared to favipiravir for COVID-19 patients.. We conducted a systematic review and Bayesian NMA. We searched the primary databases and clinical trials center for reports of short-term, randomized controlled trials (RCTs) of favipiravir for COVID-19 treatment. The primary endpoints here considered were any adverse events observed or reported during the treatment cycle with estimates of odds ratio (OR) and 95% confidence interval (CI), until November 6, 2021.. Between January 2020 and July 2021, 908 individuals were randomly assigned to one of the seven active prescription medication regimens or placebo in this study, generating seven direct comparisons on 12 data points. The safety of favipiravir over the four clinically efficacious monotherapies or combinations including tocilizumab, arbidol, lopinavir + ritonavir, and chloroquine remained unknown due to the lack of a significant difference and the limited sample size.. Overall, comparative rankings could assist doctors and guideline developers in decision-making. We have also concluded that the safety of favipiravir requires further attention.

    Topics: Amides; Chloroquine; COVID-19 Drug Treatment; Humans; Lopinavir; Network Meta-Analysis; Pyrazines; Ritonavir; SARS-CoV-2; Treatment Outcome

2022
A comparative analysis of remdesivir and other repurposed antivirals against SARS-CoV-2.
    EMBO molecular medicine, 2021, 01-11, Volume: 13, Issue:1

    The ongoing SARS-CoV-2 pandemic stresses the need for effective antiviral drugs that can quickly be applied in order to reduce morbidity, mortality, and ideally viral transmission. By repurposing of broadly active antiviral drugs and compounds that are known to inhibit viral replication of related viruses, several advances could be made in the development of treatment strategies against COVID-19. The nucleoside analog remdesivir, which is known for its potent in vitro activity against Ebolavirus and other RNA viruses, was recently shown to reduce the time to recovery in patients with severe COVID-19. It is to date the only approved antiviral for treating COVID-19. Here, we provide a mechanism and evidence-based comparative review of remdesivir and other repurposed drugs with proven in vitro activity against SARS-CoV-2.

    Topics: Adenosine Monophosphate; Alanine; Amides; Antiviral Agents; Benzamidines; COVID-19 Drug Treatment; Drug Repositioning; Esters; Guanidines; Guanine; Humans; Indoles; Lopinavir; Protease Inhibitors; Pyrazines; Ribavirin; Ritonavir; SARS-CoV-2; Virus Internalization; Virus Replication

2021
One year update on the COVID-19 pandemic: Where are we now?
    Acta tropica, 2021, Volume: 214

    We are living through an unprecedented crisis with the rapid spread of the new coronavirus disease (COVID-19) worldwide within a short time. The timely availability of thousands of SARS-CoV-2 genomes has enabled the scientific community to study the origin, structures, and pathogenesis of the virus. The pandemic has spurred research publication and resulted in an unprecedented number of therapeutic proposals. Because the development of new drugs is time consuming, several strategies, including drug repurposing and repositioning, are being tested to treat patients with COVID-19. Researchers have developed several potential vaccine candidates that have shown promise in phase II and III trials. As of 12 November 2020, 164 candidate vaccines are in preclinical evaluation, and 48 vaccines are in clinical evaluation, of which four have cleared phase III trials (Pfizer/BioNTech's BNT162b2, Moderna's mRNA-1273, University of Oxford & AstraZeneca's AZD1222, and Gamaleya's Sputnik V vaccine). Despite the acquisition of a vast body of scientific information, treatment depends only on the clinical management of the disease through supportive care. At the pandemic's 1-year mark, we summarize current information on SARS-CoV-2 origin and biology, and advances in the development of therapeutics. The updated information presented here provides a comprehensive report on the scientific progress made in the past year in understanding of SARS-CoV-2 biology and therapeutics.

    Topics: Adenosine Monophosphate; Alanine; Amides; Animals; Antiviral Agents; Chloroquine; Clinical Trials as Topic; Coronavirus; Coronavirus Infections; COVID-19; COVID-19 Vaccines; Drug Combinations; Drug Repositioning; Glucocorticoids; Humans; Hydroxychloroquine; Indoles; Ivermectin; Lopinavir; Mutation; Pandemics; Phytotherapy; Plant Extracts; Pyrazines; Ritonavir; SARS-CoV-2; Spike Glycoprotein, Coronavirus; Tinospora; Viral Zoonoses

2021
Antiviral treatment in COVID-19: which is the most promising?-a narrative review.
    Annals of palliative medicine, 2021, Volume: 10, Issue:1

    The whole world is battling through coronavirus disease 2019 (COVID-19) which is a fatal pandemic. In the early 2020, the World Health Organization (WHO) declared it as a global health emergency without definitive treatments and preventive approaches. In the absence of definitive therapeutic agents, this thorough review summarizes and outlines the potency and safety of all molecules and therapeutics which may have potential antiviral effects. A number of molecules and therapeutics licensed or being tested for some other conditions were found effective in different in vitro studies as well as in many small sample-sized clinical trials and independent case studies. However, in those clinical trials, there were some limitations which need to be overcome to find the most promising antiviral against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In conclusion, many of above-mentioned antivirals seems to have some therapeutic effects but none of them have been shown to have a strong evidence for their proper recommendation and approval in the treatment of COVID-19. Constantly evolving new evidences, exclusive adult data, language barrier, and type of study (observational, retrospective, small-sized clinical trials, or independent case series) resulted to the several limitations of this review. The need for multicentered, large sample-sized, randomized, placebo-controlled trials on COVID-19 patients to reach a proper conclusion on the most promising antiviral agent is warranted.

    Topics: Adenosine Monophosphate; Alanine; Amides; Antibodies, Monoclonal, Humanized; Antiviral Agents; Azetidines; Chloroquine; COVID-19; COVID-19 Serotherapy; Drug Combinations; Humans; Hydroxychloroquine; Immunization, Passive; Indoles; Interferons; Ivermectin; Lopinavir; Nitro Compounds; Oseltamivir; Purines; Pyrazines; Pyrazoles; Ribavirin; Ritonavir; Sulfonamides; Thiazoles

2021
A complementary critical appraisal on systematic reviews regarding the most efficient therapeutic strategies for the current COVID-19 (SARS-CoV-2) pandemic.
    Journal of medical virology, 2021, Volume: 93, Issue:5

    This critical appraisal aims to clarify which systematic reviews on COVID-19 treatment are based on high-value evidence. Hereby, the most profitable medicines can be suggested.. The mesh terms of "COVID-19 drug treatment" (Supplementary Concept) and "COVID-19 drug treatment" were sequentially utilized as search strategies in Medline and Science direct on October 18, 2020. Searches were confined to systematic reviews/meta-analyses. The Cochrane database was searched on November 1, 2020 with "COVID." With adding up four articles from other resources, 84 systematic reviews were considered for initial screening. Finally, 22 articles fulfilled the criteria and were assessed using PRISMA guidelines.. Increasing number of clinical trials from the onset of the COVID-19 pandemic has revealed that hydroxychloroquine and chloroquine are not only profitable but also deleterious. Lopinavir/ritonavir failed to maintain their initial efficacy in improving clinical symptoms and mortality rate. Steroids and tocilizumab were suggested in patients with intensely severe symptoms. Steroids reduced mechanical ventilation and death in severely ill patients. Plasma or immunoglobulins effects are absolutely controversial. Favorable impressions of remdesivir have been relied on for the early onset of this drug. Hypotension and abnormal liver function tests were realized as its side effects. Favipiravir has resulted in a higher viral clearance than remdesivir. However, this claim needs to be proved with subsequent clinical trials.. Currently, remdesivir and favipiravir are advantageous drugs that should be administered in the early phases. Their side effects are not well known and need to be found in the following research projects. Steroids and tocilizumab have been considered beneficial in the cytokine storm phase.

    Topics: Adenosine Monophosphate; Alanine; Amides; Antiviral Agents; Chloroquine; COVID-19; COVID-19 Drug Treatment; Cytokine Release Syndrome; Databases, Factual; Humans; Hydroxychloroquine; Immunoglobulins; Lopinavir; Pandemics; Pyrazines; Respiration, Artificial; Ritonavir; SARS-CoV-2

2021
COVID-19: molecular pathophysiology, genetic evolution and prospective therapeutics-a review.
    Archives of microbiology, 2021, Volume: 203, Issue:5

    The Covid-19 pandemic is highly contagious and has spread rapidly across the globe. To date there have been no specific treatment options available for this life-threatening disease. During this medical emergency, target-based drug repositioning/repurposing with a continuous monitoring and recording of results is an effective method for the treatment and drug discovery. This review summarizes the recent findings on COVID-19, its genomic organization, molecular evolution through phylogenetic analysis and has recapitulated the drug targets by analyzing the viral molecular machinery as drug targets and repurposing of most frequently used drugs worldwide and their therapeutic applications in COVID-19. Data from solidarity trials have shown that the treatment with Chloroquine, hydroxychloroquine and lopinavir-ritonavir had no effect in reducing the mortality rate and also had adverse side effects. Remdesivir, Favipiravir and Ribavirin might be a safer therapeutic option for COVID-19. Recent clinical trial has revealed that dexamethasone and convalescent plasma treatment can reduce mortality in patients with severe forms of COVID-19.

    Topics: Adenosine Monophosphate; Alanine; Amides; Animals; Antiviral Agents; Chloroquine; COVID-19; COVID-19 Serotherapy; Dexamethasone; Drug Repositioning; Evolution, Molecular; Humans; Hydroxychloroquine; Immunization, Passive; Lopinavir; Pandemics; Phylogeny; Prospective Studies; Pyrazines; Ribavirin; Ritonavir; SARS-CoV-2

2021
[The praise of uncertainty: a systematic living review to evaluate the efficacy and safety of drug treatments for patients with covid-19.]
    Recenti progressi in medicina, 2021, Volume: 112, Issue:3

    SARS-CoV-2 is a coronavirus that causes a disease which can leads to a severe form of fatal pneumonia. At december 2020 in Italy, more than 2 million people have contracted the virus and 78,755 people have died. The scientific community is studying and testing numerous compounds that can be effective and safe for treating people with covid-19.. To synthesize and evaluate the quality of evidence of efficacy and safety for the treatment. The available evidence is summarized in a living systematic review, a review that is constantly updated on the basis of the results of the new clinical studies.. A bibliographic search is launched weekly on the electronic databases and on the main clinical trial registers. Two researchers independently select the articles and assess the quality of the studies using the criteria developed by the Cochrane Collaboration, the certainty of the overall quality of the evidence is assessed using the GRADE criteria.. At 31/12/2020, 101 randomized controlled studies were included that consider 72 different comparisons and include a total of 55,281 patients. 37 drugs are tested with respect to the standard treatment, 6 are evaluated against placebo and finally 29 compare different drugs with each other. By selecting studies that evaluate the efficacy and safety of a drug compared to standard treatment, which include at least 2 studies and which have low to high certainty of evidence, results show that corticosteroids, remdesivir, favipiravir, immunoglobulins, colchicine, and umbilical cord mesenchymal stem cell infusion could reduce overall mortality. No differences for the risk of any adverse events are observed between convalescent plasma and remdesivir compared to standard treatment. Remdesivir probably reduces the risk of serious adverse events; a similar effect, although less strong, is also noted for tocilizumab and the lopinavir-ritonavir combination. In contrast, hydroxychloroquine, corticosteroids and convalescent plasma transfusion are associated with safety concerns with respect to the risk of serious adverse events.. The 101 studies included consider 72 comparisons and numerous outcomes, the results often coming from single studies and of small dimensions, and for 61% with a very low certainty of evidence, are difficult to summarize and the final result is to increase the uncertainty rather than providing useful information to the clinic and research. From all the work carried out it seems to us that the pandemic has highlighted the many shadows of scientific literature as tool to improve knowledge.

    Topics: Adenosine Monophosphate; Adrenal Cortex Hormones; Alanine; Amides; Antibodies, Monoclonal, Humanized; Antiviral Agents; Combined Modality Therapy; COVID-19; COVID-19 Drug Treatment; COVID-19 Serotherapy; Drug Combinations; Drug Repositioning; Humans; Hydroxychloroquine; Immunization, Passive; Immunoglobulins, Intravenous; Lopinavir; Mesenchymal Stem Cell Transplantation; Pandemics; Pyrazines; Randomized Controlled Trials as Topic; Ritonavir; SARS-CoV-2; Treatment Outcome; Uncertainty

2021
Pharmacological interventions for COVID-19: a systematic review of observational studies and clinical trials.
    Expert review of anti-infective therapy, 2021, Volume: 19, Issue:10

    Topics: Adenosine Monophosphate; Alanine; Amides; Anti-Inflammatory Agents; Antibodies, Monoclonal, Humanized; Antimalarials; Antiviral Agents; Chloroquine; Clinical Trials as Topic; COVID-19; COVID-19 Drug Treatment; COVID-19 Serotherapy; Humans; Hydroxychloroquine; Immunization, Passive; Indoles; Intensive Care Units; Length of Stay; Lopinavir; Methylprednisolone; Observational Studies as Topic; Patient Admission; Pyrazines; Ritonavir; SARS-CoV-2; Survival Rate

2021
Management of COVID-19 in patients with seizures: Mechanisms of action of potential COVID-19 drug treatments and consideration for potential drug-drug interactions with anti-seizure medications.
    Epilepsy research, 2021, Volume: 174

    In regard to the global pandemic of COVID-19, it seems that persons with epilepsy (PWE) are not more vulnerable to get infected by SARS-CoV-2, nor are they more susceptible to a critical course of the disease. However, management of acute seizures in patients with COVID-19 as well as management of PWE and COVID-19 needs to consider potential drug-drug interactions between antiseizure drugs and candidate drugs currently assessed as therapeutic options for COVID-19. Repurposing of several licensed and investigational drugs is discussed for therapeutic management of COVID-19. While for none of these approaches, efficacy and tolerability has been confirmed yet in sufficiently powered and controlled clinical studies, testing is ongoing with multiple clinical trials worldwide. Here, we have summarized the possible mechanisms of action of drugs currently considered as potential therapeutic options for COVID-19 management along with possible and confirmed drug-drug interactions that should be considered for a combination of antiseizure drugs and COVID-19 candidate drugs. Our review suggests that potential drug-drug interactions should be taken into account with drugs such as chloroquine/hydroxychloroquine and lopinavir/ritonavir while remdesivir and tocilizumab may be less prone to clinically relevant interactions with ASMs.

    Topics: Adenosine Monophosphate; Alanine; Amides; Anti-Inflammatory Agents; Antibodies, Monoclonal, Humanized; Anticonvulsants; Antiviral Agents; Chloroquine; COVID-19; COVID-19 Drug Treatment; Cytochrome P-450 CYP3A Inducers; Dexamethasone; Drug Combinations; Drug Interactions; Enzyme Inhibitors; Epilepsy; Glucocorticoids; Humans; Hydroxychloroquine; Interleukin 1 Receptor Antagonist Protein; Ivermectin; Lopinavir; Pyrazines; Ritonavir; SARS-CoV-2

2021
Clinical efficacy of antiviral agents against coronavirus disease 2019: A systematic review of randomized controlled trials.
    Journal of microbiology, immunology, and infection = Wei mian yu gan ran za zhi, 2021, Volume: 54, Issue:5

    Despite aggressive efforts on containment measures for the coronavirus disease 2019 (COVID-19) pandemic around the world, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is continuously spreading. Therefore, there is an urgent need for an effective antiviral agent. To date, considerable research has been conducted to develop different approaches to COVID-19 therapy. In addition to early observational studies, which could be limited by study design, small sample size, non-randomized design, or different timings of treatment, an increasing number of randomized controlled trials (RCTs) investigating the clinical efficacy and safety of antiviral agents are being carried out. This study reviews the updated findings of RCTs regarding the clinical efficacy of eight antiviral agents against COVID-19, including remdesivir, lopinavir/ritonavir, favipiravir, sofosbuvir/daclatasvir, sofosbuvir/ledipasvir, baloxavir, umifenovir, darunavir/cobicistat, and their combinations. Treatment with remdesivir could accelerate clinical improvement; however, it lacked additional survival benefits. Moreover, 5-day regimen of remdesivir might show adequate effectiveness in patients with mild to moderate COVID-19. Favipiravir was only marginally effective regarding clinical improvement and virological assessment based on the results of small RCTs. The present evidence suggests that sofosbuvir/daclatasvir may improve survival and clinical outcomes in patients with COVID-19. However, the sample sizes for analysis were relatively small, and all studies were exclusively conducted in Iran. Further larger RCTs in other countries are warranted to support these findings. In contrast, the present findings of limited RCTs did not indicate the use of lopinavir/ritonavir, sofosbuvir/ledipasvir, baloxavir, umifenovir, and darunavir/cobicistat in the treatment of patients hospitalized for COVID-19.

    Topics: Adenosine Monophosphate; Alanine; Amides; Antiviral Agents; Carbamates; Cobicistat; COVID-19 Drug Treatment; Darunavir; Dibenzothiepins; Drug Combinations; Drug Therapy, Combination; Humans; Imidazoles; Indoles; Iran; Lopinavir; Morpholines; Pyrazines; Pyridones; Pyrrolidines; Randomized Controlled Trials as Topic; Ritonavir; SARS-CoV-2; Sofosbuvir; Treatment Outcome; Triazines; Valine

2021
Pharmacologic Treatments for Coronavirus Disease 2019 (COVID-19): A Review.
    JAMA, 2020, May-12, Volume: 323, Issue:18

    The pandemic of coronavirus disease 2019 (COVID-19) caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) presents an unprecedented challenge to identify effective drugs for prevention and treatment. Given the rapid pace of scientific discovery and clinical data generated by the large number of people rapidly infected by SARS-CoV-2, clinicians need accurate evidence regarding effective medical treatments for this infection.. No proven effective therapies for this virus currently exist. The rapidly expanding knowledge regarding SARS-CoV-2 virology provides a significant number of potential drug targets. The most promising therapy is remdesivir. Remdesivir has potent in vitro activity against SARS-CoV-2, but it is not US Food and Drug Administration approved and currently is being tested in ongoing randomized trials. Oseltamivir has not been shown to have efficacy, and corticosteroids are currently not recommended. Current clinical evidence does not support stopping angiotensin-converting enzyme inhibitors or angiotensin receptor blockers in patients with COVID-19.. The COVID-19 pandemic represents the greatest global public health crisis of this generation and, potentially, since the pandemic influenza outbreak of 1918. The speed and volume of clinical trials launched to investigate potential therapies for COVID-19 highlight both the need and capability to produce high-quality evidence even in the middle of a pandemic. No therapies have been shown effective to date.

    Topics: Adenosine Monophosphate; Adrenal Cortex Hormones; Alanine; Amides; Angiotensin Receptor Antagonists; Angiotensin-Converting Enzyme Inhibitors; Antiviral Agents; Azithromycin; Betacoronavirus; Chloroquine; Coronavirus Infections; COVID-19; COVID-19 Drug Treatment; Humans; Hydroxychloroquine; Immunoglobulins; Immunologic Factors; Indoles; Lopinavir; Oseltamivir; Pandemics; Pneumonia, Viral; Pyrazines; Ribavirin; Ritonavir; SARS-CoV-2; Withholding Treatment

2020
Antiviral treatment of COVID-19
    Turkish journal of medical sciences, 2020, 04-21, Volume: 50, Issue:SI-1

    Currently, there is not any specific effective antiviral treatment for COVID-19. Although most of the COVID-19 patients have mild or moderate courses, up to 5%–10% can have severe, potentially life threatening course, there is an urgent need for effective drugs. Optimized supportive care remains the mainstay of therapy. There have been more than 300 clinical trials going on, various antiviral and immunomodulating agents are in various stages of evaluation for COVID-19 in those trials and some of them will be published in the next couple of months. Despite the urgent need to find an effective antiviral treatment for COVID-19 through randomized controlled studies, certain agents are being used all over the world based on either in-vitro or extrapolated evidence or observational studies. The most frequently used agents both in Turkey and all over the world including chloroquine, hydroxychloroquine, lopinavir/ritonavir, favipiravir and remdesivir will be reviewed here .Nitazoxanide and ivermectin were also included in this review as they have recently been reported to have an activity against SARS-CoV-2 in vitro and are licensed for the treatment of some other human infections.

    Topics: Adenosine Monophosphate; Alanine; Amides; Antiviral Agents; Betacoronavirus; Chloroquine; Coronavirus Infections; COVID-19; COVID-19 Drug Treatment; Drug Combinations; Humans; Hydroxychloroquine; Ivermectin; Lopinavir; Nitro Compounds; Pandemics; Pneumonia, Viral; Pyrazines; Ritonavir; SARS-CoV-2; Thiazoles

2020
Treatment options for COVID-19: The reality and challenges.
    Journal of microbiology, immunology, and infection = Wei mian yu gan ran za zhi, 2020, Volume: 53, Issue:3

    An outbreak related to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was first reported in Wuhan, China in December 2019. An extremely high potential for dissemination resulted in the global coronavirus disease 2019 (COVID-19) pandemic in 2020. Despite the worsening trends of COVID-19, no drugs are validated to have significant efficacy in clinical treatment of COVID-19 patients in large-scale studies. Remdesivir is considered the most promising antiviral agent; it works by inhibiting the activity of RNA-dependent RNA polymerase (RdRp). A large-scale study investigating the clinical efficacy of remdesivir (200 mg on day 1, followed by 100 mg once daily) is on-going. The other excellent anti-influenza RdRp inhibitor favipiravir is also being clinically evaluated for its efficacy in COVID-19 patients. The protease inhibitor lopinavir/ritonavir (LPV/RTV) alone is not shown to provide better antiviral efficacy than standard care. However, the regimen of LPV/RTV plus ribavirin was shown to be effective against SARS-CoV in vitro. Another promising alternative is hydroxychloroquine (200 mg thrice daily) plus azithromycin (500 mg on day 1, followed by 250 mg once daily on day 2-5), which showed excellent clinical efficacy on Chinese COVID-19 patients and anti-SARS-CoV-2 potency in vitro. The roles of teicoplanin (which inhibits the viral genome exposure in cytoplasm) and monoclonal and polyclonal antibodies in the treatment of SARS-CoV-2 are under investigation. Avoiding the prescription of non-steroidal anti-inflammatory drugs, angiotensin converting enzyme inhibitors, or angiotensin II type I receptor blockers is advised for COVID-19 patients.

    Topics: Adenosine Monophosphate; Alanine; Amides; Antiviral Agents; Azithromycin; Betacoronavirus; Coronavirus Infections; COVID-19; COVID-19 Serotherapy; Drug Combinations; Humans; Hydroxychloroquine; Immunization, Passive; Lopinavir; Pandemics; Pneumonia, Viral; Pyrazines; Ritonavir; RNA-Dependent RNA Polymerase; SARS-CoV-2; Teicoplanin

2020
Treatment of SARS-CoV-2: How far have we reached?
    Drug discoveries & therapeutics, 2020, May-06, Volume: 14, Issue:2

    The virus severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) is currently affecting more than 200 countries and territories worldwide. It has been declared as pandemic by World Health Organization (WHO) and the whole world is suffering from corona virus disease 2019 (COVID-19). Currently, no treatment for SARS-CoV-2 are approved because of lack of evidence, but a number of clinical trials are in process and we are expecting fruitful results very soon. This review focuses on various approaches of treatment and few of the most recent clinical trials carried out in this field.

    Topics: Adenosine Monophosphate; Alanine; Amides; Antibodies, Monoclonal, Humanized; Antiviral Agents; Betacoronavirus; Chloroquine; Clinical Trials as Topic; Coronavirus Infections; COVID-19; COVID-19 Drug Treatment; COVID-19 Serotherapy; Darunavir; Drug Combinations; Humans; Hydroxychloroquine; Immunization, Passive; Indoles; Interferon-alpha; Interferon-beta; Lopinavir; Pandemics; Pneumonia, Viral; Pyrazines; Ritonavir; SARS-CoV-2

2020
Efficacy and safety of antiviral treatment for COVID-19 from evidence in studies of SARS-CoV-2 and other acute viral infections: a systematic review and meta-analysis.
    CMAJ : Canadian Medical Association journal = journal de l'Association medicale canadienne, 2020, 07-06, Volume: 192, Issue:27

    Antiviral medications are being given empirically to some patients with coronavirus disease 2019 (COVID-19). To support the development of a COVID-19 management guideline, we conducted a systematic review that addressed the benefits and harms of 7 antiviral treatments for COVID-19.. We searched MEDLINE, Embase, Cochrane Central Register of Controlled Trials (CENTRAL), PubMed and 3 Chinese databases (CNKI, WANFANG and SinoMed) through Apr. 19, medRxiv and Chinaxiv through Apr. 27, and Chongqing VIP through Apr. 30, 2020. We included studies of ribavirin, chloroquine, hydroxychloroquine, umifenovir (arbidol), favipravir, interferon and lopinavir/ritonavir. If direct evidence from COVID-19 studies was not available, we included indirect evidence from studies of severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS) for efficacy outcomes and other acute respiratory viral infections for safety outcomes.. In patients with nonsevere COVID-19 illness, the death rate was extremely low, precluding an important effect on mortality. We found only very low-quality evidence with little or no suggestion of benefit for most treatments and outcomes in both nonsevere and severe COVID-19. An exception was treatment with lopinavir/ritonavir, for which we found low-quality evidence for a decrease in length of stay in the intensive care unit (risk difference 5 d shorter, 95% confidence interval [CI] 0 to 9 d) and hospital stay (risk difference 1 d shorter, 95% CI 0 to 2 d). For safety outcomes, evidence was of low or very low quality, with the exception of treatment with lopinavir/ritonavir for which moderate-quality evidence suggested likely increases in diarrhea, nausea and vomiting.. To date, persuasive evidence of important benefit in COVID-19 does not exist for any antiviral treatments, although for each treatment evidence has not excluded important benefit. Additional randomized controlled trials involving patients with COVID-19 will be needed before such treatments can be administered with confidence.

    Topics: Amides; Antiviral Agents; Betacoronavirus; Chloroquine; Coronavirus Infections; COVID-19; COVID-19 Drug Treatment; Evidence-Based Medicine; Humans; Hydroxychloroquine; Indoles; Influenza, Human; Lopinavir; Observational Studies as Topic; Pandemics; Pneumonia, Viral; Pyrazines; Ribavirin; Ritonavir; SARS-CoV-2

2020
Potential drugs for the treatment of the novel coronavirus pneumonia (COVID-19) in China.
    Virus research, 2020, Volume: 286

    The fight against the novel coronavirus pneumonia (namely COVID-19) that seriously harms human health is a common task for all mankind. Currently, development of drugs against the novel coronavirus (namely SARS-CoV-2) is quite urgent. Chinese medical workers and scientific researchers have found some drugs to play potential therapeutic effects on COVID-19 at the cellular level or in preliminary clinical trials. However, more fundamental studies and large sample clinical trials need to be done to ensure the efficacy and safety of these drugs. The adoption of these drugs without further testing must be careful. The relevant articles, news, and government reports published on the official and Preprint websites, PubMed and China National Knowledge Infrastructure (CNKI) databases from December 2019 to April 2020 were searched and manually filtered. The general pharmacological characteristics, indications, adverse reactions, general usage, and especially current status of the treatment of COVID-19 of those potentially effective drugs, including chemical drugs, traditional Chinese medicines (TCMs), and biological products in China were summarized in this review to guide reasonable medication and the development of specific drugs for the treatment of COVID-19.

    Topics: Adenosine Monophosphate; Alanine; Amides; Antiviral Agents; Betacoronavirus; China; Chloroquine; Coronavirus Infections; COVID-19; Drug Combinations; Drugs, Chinese Herbal; Humans; Indoles; Interferons; Lopinavir; Lung; Pandemics; Pneumonia, Viral; Pyrazines; Ribavirin; Ritonavir; SARS-CoV-2; Survival Analysis

2020
Antiviral mechanisms of candidate chemical medicines and traditional Chinese medicines for SARS-CoV-2 infection.
    Virus research, 2020, Volume: 286

    The Coronavirus Disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has rapidly become a global pandemic. Up to now, numerous medicines have been applied or approved for the prevention and control of the virus infection. However, the efficiency of each medicine or combination is completely different or still unknown. In this review, we discuss the types, characteristics, antiviral mechanisms, and shortcomings of recommended candidate medicines for SARS-CoV-2 infection, as well as perspectives of the drugs for the disease treatment, which may provide a theoretical basis for drug screening and application.

    Topics: Adenosine Monophosphate; Alanine; Amides; Antiviral Agents; Betacoronavirus; China; Coronavirus Infections; COVID-19; Drug Combinations; Drugs, Chinese Herbal; Humans; Hydroxychloroquine; Indoles; Interferons; Lopinavir; Pandemics; Pneumonia, Viral; Pyrazines; Ribavirin; Ritonavir; SARS-CoV-2; Survival Analysis; Teicoplanin

2020
Clinical Trials of Repurposed Antivirals for SARS-CoV-2.
    Antimicrobial agents and chemotherapy, 2020, 08-20, Volume: 64, Issue:9

    The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has prompted the repurposing of drugs on the basis of promising

    Topics: Adenosine Monophosphate; Alanine; Amides; Antiviral Agents; Betacoronavirus; Coronavirus Infections; COVID-19; Drug Administration Schedule; Drug Combinations; Drug Repositioning; Humans; Hydroxychloroquine; Interferons; Lopinavir; Pandemics; Pneumonia, Viral; Pyrazines; Randomized Controlled Trials as Topic; Ribavirin; Ritonavir; SARS-CoV-2; Survival Analysis; Treatment Outcome

2020
An overview of the safety, clinical application and antiviral research of the COVID-19 therapeutics.
    Journal of infection and public health, 2020, Volume: 13, Issue:10

    Since a novel coronavirus pneumonia outbreak in late December 2019, coronavirus disease -19 (COVID-19) epidemic has gradually spread worldwide, becoming a major public health event. No specific antivirals are currently available for COVID-19 caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The treatments for COVID-19 are mainly based on the experiences of similar virus such SARS-CoV, MERS-CoV, HIV and influenza viruses. Scientists have taken great efforts to investigate the effective methods for the treatment of COVID-19. Up to now, there are over 1000 clinical studies for COVID-19 all over the world. In this article, we reviewed the current options for COVID-19 therapy including small molecules such as Remdesivir, Favipiravir, Lopinavir/Ritonavir etc, peptide inhibitors of ACE2, Traditional Chinese Medicines and Biologics such as SARS-CoV-2-specific neutralizing antibodies, mesenchymal stem cells and vaccines etc. Meanwhile, we systematically reviewed their clinical safety, clinical applications and progress of antiviral researches. The therapeutic effect of these antiviral drugs is summarized and compared, hoping to provide some ideas for clinical options of COVID-19 treatment and also provide experiences for the life-threatening virus diseases in the future.

    Topics: Adenosine Monophosphate; Alanine; Amides; Angiotensin-Converting Enzyme Inhibitors; Antimalarials; Antiviral Agents; Betacoronavirus; Biomedical Research; Coronavirus Infections; COVID-19; COVID-19 Serotherapy; Drug Combinations; Drug Development; Drugs, Chinese Herbal; Humans; Hydroxychloroquine; Immunization, Passive; Indoles; Interferons; Lopinavir; Pandemics; Pneumonia, Viral; Pyrazines; Ribavirin; Ritonavir; SARS-CoV-2

2020
Clinical efficacy of antivirals against novel coronavirus (COVID-19): A review.
    Journal of infection and public health, 2020, Volume: 13, Issue:9

    The unprecedented challenge faced by mankind due to emergence of coronavirus 2019 (COVID-19) pandemic has obligated researchers across the globe to develop effective medicine for prevention and treatment of this deadly infection. The aim of this review is to compile recently published research articles on anti-COVID 19 management with their benefits and risk to facilitate decision making of the practitioners and policy makers. Unfortunately, clinical outcomes reported for antivirals are not consistent. Initial favorable reports on lopinavir/ritonavir contradicted by recent studies. Ostalmovir has conflicting reports. Short term therapy of remdesivir claimed to be beneficial. Favipiravir demonstrated good recovery in some of the cases of COVID-19. Umifenovir (Arbidol) was associated with reduction in mortality in few studies. Overall, until now, U.S. Food and Drug administration issued only emergency use authorization to remdesivir for the treatment of suspected or laboratory-confirmed COVID-19 in adults and children hospitalized with severe disease.

    Topics: Adenosine Monophosphate; Alanine; Amides; Antiviral Agents; Betacoronavirus; Coronavirus Infections; COVID-19; Drug Combinations; Humans; Indoles; Lopinavir; Pandemics; Pneumonia, Viral; Pyrazines; Ritonavir; SARS-CoV-2

2020
Potential strategies for combating COVID-19.
    Archives of virology, 2020, Volume: 165, Issue:11

    Coronavirus disease 2019, also known as COVID-19, is caused by a novel coronavirus named severe acute respiratory syndrome coronavirus 2, or SARS-CoV-2. The infection has now catapulted into a full-blown pandemic across the world, which has affected more than 2 million people and has led to approximately 150,000 fatalities all over the world (WHO). In this review, we elaborate all currently available data that shed light on possible methods for treatment of COVID-19, such as antiviral drugs, corticosteroids, convalescent plasma, and potentially effective vaccines. Additionally, ongoing and discontinued clinical trials that have been carried out for validating probable treatments for COVID-19 are discussed. The review also elaborates the prospective approach and the possible advantages of using convalescent plasma and stem cells for the improvement of clinical symptoms and meeting the demand for an instantaneous cure.

    Topics: Adenosine Monophosphate; Adrenal Cortex Hormones; Alanine; Amides; Antibodies, Monoclonal, Humanized; Antiviral Agents; Betacoronavirus; Coronavirus Infections; COVID-19; COVID-19 Serotherapy; COVID-19 Vaccines; Cytokine Release Syndrome; Drug Combinations; Humans; Hydroxychloroquine; Immunization, Passive; Immunologic Factors; Indoles; Interleukin 1 Receptor Antagonist Protein; Lopinavir; Pandemics; Pneumonia, Viral; Pyrazines; Ritonavir; SARS-CoV-2; Severity of Illness Index; Viral Vaccines

2020
Current treatment of COVID-19 in renal patients: hope or hype?
    Internal and emergency medicine, 2020, Volume: 15, Issue:8

    To date the severe acute respiratory syndrome coronavirus 2 (SARS- CoV-2), known as COVID-19, is for clinicians the most difficult global therapeutic problem. In this landscape, the management of patients with chronic kidney disease, acute kidney injury or patients undergoing immunosuppressant therapies for kidney transplant or glomerular diseases, represent a clinical challenge for nephrologists, especially in patients with severe acute lung involvement. Therefore in this setting, due to the lack of anti-COVID treatment schedules, tailored management is mandatory to reduce the side effects, as consequence of impaired renal function and drugs interactions. We report the main treatment actually used against SARS-CoV-2, underlining its possible use in the nephropatic patients and the central role of nephrologists to improve the clinical outcome.

    Topics: Adenosine Monophosphate; Adrenal Cortex Hormones; Alanine; Amides; Antibodies, Monoclonal; Cobicistat; Coronavirus Infections; COVID-19; Darunavir; Drug Combinations; Humans; Kidney; Lopinavir; Pandemics; Pneumonia, Viral; Pyrazines; Renal Insufficiency, Chronic; Renal Replacement Therapy; Ritonavir

2020
Treatment Options for Coronavirus Disease 2019 in Patients With Reduced or Absent Kidney Function.
    Advances in chronic kidney disease, 2020, Volume: 27, Issue:5

    Coronavirus disease 2019, the disease caused by the severe acute respiratory syndrome coronavirus 2 virus, was first identified in the Hubei Province of China in late 2019. Currently, the only role for therapy is treatment of the disease, as opposed to postexposure prophylaxis, however multiple clinical trials are currently ongoing for both treatment and prophylaxis. Treating coronavirus disease 2019 relies on two components; the first is inhibition of the viral entrance and replication within the body and the second is inhibition of an exacerbated immune response which can be seen in patients with severe disease. Many drugs have shown in vitro antiviral activity; however, clinical trials have not been as promising. This review summarizes the current data for the most commonly used drugs for coronavirus disease 2019 and will cover the unique factors that may affect the dosing of these medications in patients with CKD. While clinical trials are ongoing, most are in patients with normal kidney function. During a pandemic, when patients with CKD are at higher risk of both infection and death, it is imperative to include patients these patients in the clinical trials.

    Topics: Adenosine Monophosphate; Alanine; Amides; Anti-Inflammatory Agents; Antibodies, Monoclonal, Humanized; Antiviral Agents; Chloroquine; COVID-19; COVID-19 Drug Treatment; COVID-19 Serotherapy; COVID-19 Vaccines; Creatinine; Cytidine; Dexamethasone; Drug Combinations; Drug Interactions; Humans; Hydroxychloroquine; Hydroxylamines; Immunization, Passive; Interferons; Janus Kinase Inhibitors; Lopinavir; Pyrazines; Renal Elimination; Renal Insufficiency, Chronic; Renal Replacement Therapy; Ribavirin; Ritonavir; SARS-CoV-2

2020
Possible treatment and strategies for COVID-19: review and assessment.
    European review for medical and pharmacological sciences, 2020, Volume: 24, Issue:23

    The coronavirus disease 2019 (COVID-19) is declared as an international emergency in 2020. Its prevalence and fatality rate are rapidly increasing but the medication options are still limited for this perilous disease. The emergent outbreak of COVID-19 triggered by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) keeps propagating globally. The present scenario has emphasized the requirement for therapeutic opportunities to relive and overcome this latest pandemic. Despite the fact, the deteriorating developments of COVID-19, there is no drug certified to have considerable effects in the medical treatment for COVID-19 patients. The COVID-19 pandemic requests for the rapid testing of new treatment approaches. Based on the evidence, hydroxychloroquine is the first medicine opted for the treatment of disease. Umifenovir, remdesivir, and fevipiravir are deemed the most hopeful antiviral agent by improving the health of infected patients. The dexamethasone is a first known steroid medicine that can save the lives of seriously ill patients, and it is shown in a randomized clinical trial by the United Kingdom that it reduced the death rate in COVID-19 patients. The current review recapitulates the existing evidence of possible therapeutic drugs, peptides, humanized antibodies, convulsant plasma, and vaccination that has revealed potential in fighting COVID-19 infections. Many randomized and controlled clinical trials are taking place to further validate these agent's safety and effectiveness in curing COVID-19.

    Topics: Adenosine Monophosphate; Alanine; Amides; Anti-Bacterial Agents; Anti-Inflammatory Agents; Antibodies, Monoclonal, Humanized; Antibodies, Neutralizing; Antiparasitic Agents; Antiviral Agents; Cannabinoids; Chloroquine; Complement Inactivating Agents; COVID-19; COVID-19 Drug Treatment; COVID-19 Serotherapy; COVID-19 Vaccines; Dexamethasone; Drug Combinations; Enzyme Inhibitors; Humans; Hydroxychloroquine; Immunization, Passive; Indoles; Interferons; Ivermectin; Lopinavir; Nitro Compounds; Pyrazines; Ritonavir; SARS-CoV-2; Teicoplanin; Tetracyclines; Thiazoles

2020

Trials

4 trial(s) available for ritonavir and favipiravir

ArticleYear
Efficacy and safety of favipiravir plus interferon-beta versus lopinavir/ritonavir plus interferon-beta in moderately ill patients with COVID-19: A randomized clinical trial.
    Journal of medical virology, 2022, Volume: 94, Issue:7

    Favipiravir (FVP), lopinavir/ritonavir (LPV/RTV), and interferon-beta (INF-beta) are considered as potential treatments for COVID-19. We examined the efficacy and safety of FVP and INF-beta compared to LPV/RTV and INF-beta combinations for the treatment of SARS-CoV-2. It was a single-center randomized clinical trial. Eligible patients were randomized to receive FVP plus INF-beta versus LPV/RTV plus INF-beta. The primary endpoint was the viral clearance after seven days of randomization. ICU admission, length of stay (LOS) in hospital, in-hospital mortality, and the incidence of adverse events were also measured. This trial was registered on the Iranian Registry of Clinical Trials (IRCT20200506047323N3). Patients were randomly allocated to the FVP (n = 33) and LPV/RTV (n = 33) groups. The viral clearance on Day seven was not significantly different between the FVP (31.1%) and the LPV/RTV groups (16.1%). The rate of ICU admission and likewise the in-hospital mortality in the FVP group (12.5% and 6.3%, respectively) were similar to the LPV/RTV groups (19.4% and 19.4%, respectively). The median LOS in the hospital was also not different (6.8 days [interquartile range; IQR = 5.0-11.0] in the FVP and (8.0 days [IQR = 5.5-12.5]) in LPV/RTV groups (p = 0.140). Adverse events were observed in 25.0% of FVP and 32.3% of LPV/RTV groups. The combination therapy with FVP did not exert a higher efficacy compared to the combination regimen of LPV/RTV. However, both treatment regimens demonstrated a mild profile of adverse events.

    Topics: Amides; COVID-19 Drug Treatment; Humans; Interferon-beta; Iran; Lopinavir; Pyrazines; Ritonavir; SARS-CoV-2

2022
Favipiravir, lopinavir-ritonavir, or combination therapy (FLARE): A randomised, double-blind, 2 × 2 factorial placebo-controlled trial of early antiviral therapy in COVID-19.
    PLoS medicine, 2022, Volume: 19, Issue:10

    Early antiviral treatment is effective for Coronavirus Disease 2019 (COVID-19) but currently available agents are expensive. Favipiravir is routinely used in many countries, but efficacy is unproven. Antiviral combinations have not been systematically studied. We aimed to evaluate the effect of favipiravir, lopinavir-ritonavir or the combination of both agents on Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) viral load trajectory when administered early.. We conducted a Phase 2, proof of principle, randomised, placebo-controlled, 2 × 2 factorial, double-blind trial of ambulatory outpatients with early COVID-19 (within 7 days of symptom onset) at 2 sites in the United Kingdom. Participants were randomised using a centralised online process to receive: favipiravir (1,800 mg twice daily on Day 1 followed by 400 mg 4 times daily on Days 2 to 7) plus lopinavir-ritonavir (400 mg/100 mg twice daily on Day 1, followed by 200 mg/50 mg 4 times daily on Days 2 to 7), favipiravir plus lopinavir-ritonavir placebo, lopinavir-ritonavir plus favipiravir placebo, or both placebos. The primary outcome was SARS-CoV-2 viral load at Day 5, accounting for baseline viral load. Between 6 October 2020 and 4 November 2021, we recruited 240 participants. For the favipiravir+lopinavir-ritonavir, favipiravir+placebo, lopinavir-ritonavir+placebo, and placebo-only arms, we recruited 61, 59, 60, and 60 participants and analysed 55, 56, 55, and 58 participants, respectively, who provided viral load measures at Day 1 and Day 5. In the primary analysis, the mean viral load in the favipiravir+placebo arm had changed by -0.57 log10 (95% CI -1.21 to 0.07, p = 0.08) and in the lopinavir-ritonavir+placebo arm by -0.18 log10 (95% CI -0.82 to 0.46, p = 0.58) compared to the placebo arm at Day 5. There was no significant interaction between favipiravir and lopinavir-ritonavir (interaction coefficient term: 0.59 log10, 95% CI -0.32 to 1.50, p = 0.20). More participants had undetectable virus at Day 5 in the favipiravir+placebo arm compared to placebo only (46.3% versus 26.9%, odds ratio (OR): 2.47, 95% CI 1.08 to 5.65; p = 0.03). Adverse events were observed more frequently with lopinavir-ritonavir, mainly gastrointestinal disturbance. Favipiravir drug levels were lower in the combination arm than the favipiravir monotherapy arm, possibly due to poor absorption. The major limitation was that the study population was relatively young and healthy compared to those most affected by the COVID-19 pandemic.. At the current doses, no treatment significantly reduced viral load in the primary analysis. Favipiravir requires further evaluation with consideration of dose escalation. Lopinavir-ritonavir administration was associated with lower plasma favipiravir concentrations.. Clinicaltrials.gov NCT04499677 EudraCT: 2020-002106-68.

    Topics: Antiviral Agents; COVID-19 Drug Treatment; Humans; Lopinavir; Pandemics; Ritonavir; SARS-CoV-2; Treatment Outcome

2022
Early antiviral treatment in outpatients with COVID-19 (FLARE): a structured summary of a study protocol for a randomised controlled trial.
    Trials, 2021, Mar-08, Volume: 22, Issue:1

    The objective of this trial is to assess whether early antiviral therapy in outpatients with COVID-19 with either favipiravir plus lopinavir/ritonavir, lopinavir/ritonavir alone, or favipiravir alone, is associated with a decrease in viral load of SARS-CoV-2 compared with placebo.. FLARE is a phase IIA randomised, double-blind, 2x2 factorial placebo-controlled, interventional trial.. Participants will be randomised 1:1:1:1 using a concealed online minimisation process into one of the following four arms: Arm 1: Favipiravir + Lopinavir/ritonavir Oral favipiravir at 1800mg twice daily on Day 1, followed by 400mg four (4) times daily from Day 2 to Day 7 PLUS lopinavir/ritonavir at 400mg/100mg twice daily on Day 1, followed by 200mg/50mg four (4) times daily from Day 2 to Day 7. Arm 2: Favipiravir + Lopinavir/ritonavir placebo Oral favipiravir at 1800mg twice daily on Day 1, followed by 400mg four (4) times daily from Day 2 to Day 7 PLUS lopinavir/ritonavir matched placebo at 400mg/100mg twice daily on Day 1, followed by 200mg/50mg four (4) times daily from Day 2 to Day 7. Arm 3: Favipiravir placebo + Lopinavir/ritonavir Oral favipiravir matched placebo at 1800mg twice daily on Day 1, followed by 400mg four (4) times daily from Day 2 to Day 7 PLUS lopinavir/ritonavir at 400mg/100mg twice daily on Day 1, followed by 200mg/50mg four (4) times daily from Day 2 to Day 7. Arm 4: Favipiravir placebo + Lopinavir/ritonavir placebo Oral favipiravir matched placebo at 1800mg twice daily on Day 1, followed by 400mg four (4) times daily from Day 2 to Day 7 PLUS lopinavir/ritonavir matched placebo at 400mg/100mg twice daily on Day 1, followed by 200mg/50mg four (4) times daily from Day 2 to Day 7.. The primary outcome is upper respiratory tract viral load at Day 5.. Percentage of participants with undetectable upper respiratory tract viral load after 5 days of therapy Proportion of participants with undetectable stool viral load after 7 days of therapy Rate of decrease in upper respiratory tract viral load during 7 days of therapy Duration of fever following commencement of trial medications Proportion of participants with hepatotoxicity after 7 days of therapy Proportion of participants with other medication-related toxicity after 7 days of therapy and 14 days post-randomisation Proportion of participants admitted to hospital with COVID-19 related illness Proportion of participants admitted to ICU with COVID-19 related illness Proportion of participants who have died with COVID-19 related illness Pharmacokinetic and pharmacodynamic analysis of favipiravir Exploratory: Proportion of participants with deleterious or resistance-conferring mutations in SARS-CoV-2 RANDOMISATION: Participants will be randomised 1:1:1:1 using a concealed online minimisation process, with the following factors: trial site, age (≤ 55 vs > 55 years old), gender, obesity (BMI <30 vs ≥30), symptomatic or asymptomatic, current smoking status (Yes = current smoker, No = ex-smoker, never smoker), ethnicity (Caucasian, other) and presence or absence of comorbidity (defined as diabetes, hypertension, ischaemic heart disease (including previous myocardial infarction), other heart disease (arrhythmia and valvular heart disease), asthma, COPD, other chronic respiratory disease).. Participants and investigators will both be blinded to treatment allocation (double-blind).. 240 participants, 60 in each arm.. Protocol version 4.0 dated 7. The FLARE trial is registered with Clinicaltrials.gov, trial identifying number NCT04499677 , date of registration 4. The full protocol is attached as an additional file, accessible from the Trials website (Additional file 1). In the interest in expediting dissemination of this material, the familiar formatting has been eliminated; this Letter serves as a summary of the key elements of the full protocol.

    Topics: Ambulatory Care; Amides; Antiviral Agents; Clinical Trials, Phase II as Topic; COVID-19 Drug Treatment; Double-Blind Method; Drug Combinations; Drug Therapy, Combination; Early Medical Intervention; Humans; Lopinavir; Pyrazines; Randomized Controlled Trials as Topic; Ritonavir; SARS-CoV-2; United Kingdom; Viral Load

2021
Evaluation of the efficacy and safety of favipiravir and interferon compared to lopinavir/ritonavir and interferon in moderately ill patients with COVID-19: a structured summary of a study protocol for a randomized controlled trial.
    Trials, 2020, Oct-27, Volume: 21, Issue:1

    We will evaluate the efficacy and safety of favipiravir and interferon beta-1a compared to lopinavir/ritonavir and interferon beta-1a in patients with confirmed COVID-19, who are moderately ill.. This is a phase 3, single-center, randomized, open-label, controlled trial with a parallel-group design carried out at Shahid Mohammadi Hospital, Bandar Abbas, Iran.. All patients with age ≥ 20 years admitted at the Severe Acute Respiratory Syndrome Departments of the Shahid Mohammadi Hospital, Bandar Abbas, Iran, will be screened for the following criteria.. 1. Confirmed diagnosis of infection with SARS-CoV-2 using polymerase chain reaction and/or antibody tests. 2. Moderate COVID-19 pneumonia (via computed tomography and/or X-ray imaging), requiring hospitalization. 3. Hospitalized ≤ 48 h. 4. Signing informed consent and willingness of the participant to accept randomization to any assigned treatment arm.. 1. Underlying conditions, including chronic hepatitis, cirrhosis, cholestatic liver diseases, cholecystitis, peptic ulcers, acute and chronic renal failure, and peptic ulcers. 2. Severe and critical COVID-19 pneumonia. 3. History of allergy to favipiravir, lopinavir/ritonavir, and interferon beta-1a. 4. Pregnancy and breastfeeding.. Intervention group: favipiravir (Zhejiang Hisun, China) with interferon beta-1a (CinnaGen, Iran). This group will receive 1600 mg favipiravir twice a day for the first day and 600 mg twice a day for the following 4 days with five doses of 44 mcg interferon beta-1a every other day.. lopinavir/ritonavir (Heterd Company, India) with interferon beta-1a (CinnaGen, Iran). This group will receive 200/50 mg lopinavir/ritonavir twice a day for 7 days with five doses of 44 mcg interferon beta-1a every other day. Other supportive and routine care will be the same in both groups.. The primary outcome of the trial is the viral load of SARS-CoV-2 in the nasopharyngeal samples assessed by RT-PCR after 7 days of randomization as well as clinical improvement of fever and O. Eligible patients will be allocated to one of the study arms using block randomization in a 1:1 ratio (each block consists of 10 patients). A web-based system will be used to generate random numbers for the allocation sequence. Each number relates to one of the study arms.. This is an open-label trial without blinding and placebo control.. A total of 60 patients will be randomized into two groups (30 patients in the intervention group and 30 patients in the control group).. The trial protocol is version 1.0, 22 July 2020. Recruitment began on 25 July 2020 and is anticipated to be completed by 25 September 2020.. Iranian Registry of Clinical Trials (IRCT) IRCT20200506047323N3 . Registered on 22 July 2020.. The full protocol is attached as an additional file, accessible from the Trials website (Additional file 1). In the interest in expediting the dissemination of this material, the familiar formatting has been eliminated; this letter serves as a summary of the key elements of the full protocol.

    Topics: Adult; Amides; Antiviral Agents; Betacoronavirus; Clinical Laboratory Techniques; Coronavirus Infections; COVID-19; COVID-19 Testing; Drug Combinations; Drug Monitoring; Drug Therapy, Combination; Female; Humans; Interferons; Iran; Lopinavir; Male; Pandemics; Pneumonia, Viral; Pyrazines; Randomized Controlled Trials as Topic; Ritonavir; SARS-CoV-2; Severity of Illness Index; Treatment Outcome; Viral Load

2020

Other Studies

17 other study(ies) available for ritonavir and favipiravir

ArticleYear
Comparison of demographic and clinical characteristics of hospitalized COVID-19 patients with severe/critical illness in the first wave versus the second wave.
    Journal of medical virology, 2022, Volume: 94, Issue:1

    Due to current advances and growing experience in the management of coronavirus Disease 2019 (COVID-19), the outcome of COVID-19 patients with severe/critical illness would be expected to be better in the second wave compared with the first wave. As our hospitalization criteria changed in the second wave, we aimed to investigate whether a favorable outcome occurred in hospitalized COVID-19 patients with only severe/critical illness. Among 642 laboratory-confirmed hospitalized COVID-19 patients in the first wave and 1121 in the second wave, those who met World Health Organization (WHO) definitions for severe or critical illness on admission or during follow-up were surveyed. Data on demographics, comorbidities, C-reactive protein (CRP) levels on admission, and outcomes were obtained from an electronic hospital database. Univariate analysis was performed to compare the characteristics of patients in the first and second waves. There were 228 (35.5%) patients with severe/critical illness in the first wave and 681 (60.7%) in the second wave. Both groups were similar in terms of age, gender, and comorbidities, other than chronic kidney disease. Median serum CRP levels were significantly higher in patients in the second wave compared with those in the first wave [109 mg/L (interquartile range [IQR]: 65-157) vs. 87 mg/L (IQR: 39-140); p < 0.001]. However, intensive care unit admission and mortality rates were similar among the waves. Even though a lower mortality rate in the second wave has been reported in previous studies, including all hospitalized COVID-19 patients, we found similar demographics and outcomes among hospitalized COVID-19 patients with severe/critical illness in the first and second wave.

    Topics: Aged; Amides; Antibodies, Monoclonal, Humanized; Azithromycin; C-Reactive Protein; Comorbidity; COVID-19; COVID-19 Drug Treatment; Critical Care; Drug Combinations; Enoxaparin; Female; Hospital Mortality; Hospitalization; Humans; Hydroxychloroquine; Interleukin 1 Receptor Antagonist Protein; Lopinavir; Male; Methylprednisolone; Middle Aged; Pyrazines; Retrospective Studies; Ritonavir; SARS-CoV-2; Severity of Illness Index; Treatment Outcome; Turkey

2022
Highly sensitive high-performance thin-layer chromatography method for the simultaneous determination of molnupiravir, favipiravir, and ritonavir in pure forms and pharmaceutical formulations.
    Journal of separation science, 2022, Volume: 45, Issue:14

    Favipiravir, molnupiravir, and ritonavir have been recently approved as the first oral antivirals for treatment of SARS-CoV-2 viral infections. Their combination was reported in several clinical studies, alternatively, to enhance the viral eradication and improve patient's recovery times and rates. Being all orally administered, therefore, the development of new sensitive and validated methodologies for their simultaneous determination is a necessitate. In the proposed research, a sensitive, selective, and simple high-performance thin layer chromatography method was developed and validated for determination of favipiravir, molnupiravir, and ritonavir. Silica gel 60F254 thin layer chromatography plates were used as stationary phase for this separation using mobile phase composed of methylene chloride:ethyl acetate:methanol:25% ammonia (6:3:4:1, v/v/v/v). Densitometric detection was performed at wavelength 289 nm. Peaks of favipiravir, molnupiravir, and ritonavir were resolved at retention factors 0.22, 0.42, and 0.63, respectively. The proposed method was found linear within the specified ranges of 3.75-100.00 μg/mL for molnupiravir and favipiravir, and 2.75-100.00 μg/mL for ritonavir. Limits of detection were found to be 1.12, 1.21, and 0.89 μg/mL for favipiravir, molnupiravir, and ritonavir, respectively. This is the first method to be reported for the simultaneous determination of the cited three antiviral drugs. The method was assessed on novel greenness metrics.

    Topics: Amides; Antiviral Agents; Chromatography, High Pressure Liquid; Chromatography, Thin Layer; COVID-19 Drug Treatment; Cytidine; Drug Compounding; Humans; Hydroxylamines; Pyrazines; Reproducibility of Results; Ritonavir; SARS-CoV-2

2022
Modification of immunosuppressive agents in a kidney transplant recipient with COVID-19 and acute kidney injury.
    Journal of infection in developing countries, 2021, 09-30, Volume: 15, Issue:9

    An outbreak of coronavirus disease-19 (COVID-19) has occurred in different parts of the world. Although a large piece of information regarding the epidemiology, clinical features, and management of COVID-19 has been reported in the general population, there is very limited data regarding organ transplant recipients, particularly regarding the management of maintenance immunosuppressive agents during infection.. We described a case of kidney transplant recipient from Thailand who had COVID-19 pneumonia and severe acute kidney injury.. The patient's serum creatinine peaked at 7.0 mg/dL on day 15 of illness and returned to baseline value of 2.0 mg/dL on day 26 of illness. We have shown how we modified tacrolimus, mycophenolate, and steroids in the patient who had received favipiravir and lopinavir/ritonavir for COVID-19 pneumonia.. In this case, successful modification of this immunosuppressive regimen was accomplished to reduce drug interaction complications, aiming to avoid calcineurin inhibitor nephrotoxicity while maintaining appropriate levels of immunosuppression to prevent organ rejection and to promote the patient's recovery from infection.

    Topics: Acute Kidney Injury; Adult; Amides; COVID-19 Drug Treatment; Drug Combinations; Drug Interactions; Humans; Immunosuppressive Agents; Kidney Transplantation; Lopinavir; Male; Mycophenolic Acid; Pyrazines; Ritonavir; Steroids; Tacrolimus; Thailand; Transplant Recipients

2021
African scientists race to test COVID drugs - but face major hurdles.
    Nature, 2021, Volume: 599, Issue:7883

    Topics: Africa; Amides; Amodiaquine; Artesunate; Atazanavir Sulfate; Carbamates; Clinical Trials as Topic; COVID-19; COVID-19 Drug Treatment; COVID-19 Vaccines; Cytidine; Drug Approval; Drug Evaluation, Preclinical; Drug Repositioning; Drug Therapy, Combination; Humans; Hydroxylamines; Imidazoles; Ivermectin; Naphthyridines; Nitro Compounds; Pregnenediones; Pyrazines; Pyrrolidines; Ritonavir; Sample Size; Thiazoles; Valine; World Health Organization

2021
Observational study of the effects of Favipiravir vs Lopinavir/Ritonavir on clinical outcomes in critically Ill patients with COVID-19.
    Journal of clinical pharmacy and therapeutics, 2021, Volume: 46, Issue:2

    In November 2019, several patients were diagnosed with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in Wuhan, China. So far, there are no specific treatments with proven high efficacy in patients with SARS-CoV-2. Presently, several drugs, such as hydroxychloroquine, ribavirin, favipiravir (FVP), lopinavir/ritonavir (LPV/r), remdesivir and oseltamivir, have been suggested as effective treatments for SARS-CoV-2. The aim of this study was to describe the clinical experience with FPV and LPV/r in critically ill patients with COVID-19 at Sakarya University Education and Research Hospital.. The study included 107 consecutive patients who had a laboratory confirmation of COVID-19 and were admitted to the intensive care unit (ICU) between 19 March and 19 May 2020. Follow-up continued through 30 May 2020 when the last observed patients were discharged.. Of the 107 patients, 65 received FPV (Group FPV) and 42 received LPV/r (Group LPV/r). The two groups were similar in terms of demographic data and clinical findings. 43 (66.2%) of the 65 patients in the FPV group and 23 (54.8%) of the 42 patients in the LPV/r group died (p = 0.237). The median ICU stay was 6.6 (IQR, 3-10) days in the FPV group and 9 (IQR, 6-16) days in the LPV/r group, which was a statistically significant difference (p = 0.010).. The length of hospital stay was significantly lower in the FVP group compared to the LPV/r group among patients who were discharged from the ICU. Although the analysis was done with a limited number of patients and the observed difference in mortality rate is of some concern, FVP treatment may be more beneficial than LPV/r in terms of effective use in the ICU.

    Topics: Amides; Antiviral Agents; COVID-19; COVID-19 Drug Treatment; Critical Illness; Drug Combinations; Female; Humans; Intensive Care Units; Length of Stay; Lopinavir; Male; Middle Aged; Mortality; Pyrazines; Ritonavir; SARS-CoV-2; Treatment Outcome; Turkey

2021
Suspected cholestatic liver injury induced by favipiravir in a patient with COVID-19.
    Journal of infection and chemotherapy : official journal of the Japan Society of Chemotherapy, 2021, Volume: 27, Issue:2

    Favipiravir is an antiviral drug that is expected to have a therapeutic effect on SARS-CoV2 infection. Teratogenicity and hyperuricemia are known as the main side effects of favipiravir, but little is known about other side effects. This report describes a case of cholestatic liver injury induced by favipiravir. A 73-year-old Japanese with a history of alcoholic hepatitis was infected with SARS-CoV2. Drug therapy was instituted with lopinavir/ritonavir combined with interferon β-1b. However, his condition worsened despite additional support with continuous hemodiafiltration and veno-venous extracorporeal membrane oxygenation. We suspected complications of bacterial pneumonia and started favipiravir in addition to antimicrobial therapy. Favipiravir was administered at 6000 mg/day on the first day and 2400 mg/day for the second and subsequent days for 14 days. After the initiation of antibiotics, transaminase and total bilirubin were elevated, suggesting a transient cholestasic liver dysfunction. The liver dysfunction in this case may have been triggered by antibacterial treatment, and high dose of favipiravir may have promoted the deterioration of liver function. Monitoring of liver function is vital and close attention should be paid when using favipiravir at high doses or in patients with impaired liver function.

    Topics: Aged; Amides; Antiviral Agents; Chemical and Drug Induced Liver Injury; Cholestasis; COVID-19; COVID-19 Drug Treatment; Drug Therapy, Combination; Extracorporeal Membrane Oxygenation; Humans; Lopinavir; Male; Pyrazines; Ritonavir; SARS-CoV-2

2021
Missing clinical trial data: the evidence gap in primary data for potential COVID-19 drugs.
    Trials, 2021, Jan-15, Volume: 22, Issue:1

    Several drugs are being repurposed for the treatment of the coronavirus disease 2019 (COVID-19) pandemic based on in vitro or early clinical findings. As these drugs are being used in varied regimens and dosages, it is important to enable synthesis of existing safety data from clinical trials. However, availability of safety information is limited by a lack of timely reporting of overall clinical trial results on public registries or through academic publication. We aimed to analyse the evidence gap in this data by conducting a rapid review of results posting on ClinicalTrials.gov and in academic publications to quantify the number of trials missing results for drugs potentially being repurposed for COVID-19.. ClinicalTrials.gov was searched for 19 drugs that have been identified as potential treatments for COVID-19. Relevant clinical trials for any prior indication were listed by identifier (NCT number) and checked for results and for timely result reporting (within 395 days of the primary completion date). Additionally, PubMed and Google Scholar were searched to identify publications of results not listed on the registry. A second, blinded search of 10% of trials was conducted to assess reviewer concordance.. Of 3754 completed trials, 1516 (40.4%) did not post results on ClinicalTrials.gov or in the academic literature. Tabular results were available on ClinicalTrials.gov for 1172 (31.2%) completed trials. A further 1066 (28.4%) had published results in the academic literature, but did not report results on ClinicalTrials.gov . Key drugs missing clinical trial results include hydroxychloroquine (37.0% completed trials unreported), favipiravir (77.8%) and lopinavir (40.5%).. There is an important evidence gap for the safety of drugs being repurposed for COVID-19. This uncertainty could cause unnecessary additional morbidity and mortality during the pandemic. We recommend caution in experimental drug use for non-severe disease and urge clinical trial sponsors to report missing results retrospectively.

    Topics: Amides; Antiviral Agents; Clinical Trials as Topic; COVID-19 Drug Treatment; Drug Combinations; Drug Repositioning; Enzyme Inhibitors; Evidence-Based Medicine; Humans; Hydroxychloroquine; Lopinavir; PubMed; Pyrazines; Registries; Research Design; Research Report; Ritonavir; SARS-CoV-2

2021
Simultaneous quantification of seven repurposed COVID-19 drugs remdesivir (plus metabolite GS-441524), chloroquine, hydroxychloroquine, lopinavir, ritonavir, favipiravir and azithromycin by a two-dimensional isotope dilution LC-MS/MS method in human serum
    Journal of pharmaceutical and biomedical analysis, 2021, Mar-20, Volume: 196

    The present COVID-19 pandemic has prompted worldwide repurposing of drugs. The aim of the present work was to develop and validate a two-dimensional isotope-dilution liquid chromatrography tandem mass spectrometry (ID-LC-MS/MS) method for accurate quantification of remdesivir and its active metabolite GS-441524, chloroquine, hydroxychloroquine, lopinavir, ritonavir, favipiravir and azithromycin in serum; drugs that have gained attention for repurposing in the treatment of COVID-19.. Following protein precipitation, samples were separated with a two-dimensional ultra-high performance liquid chromatography (2D-UHPLC) setup, consisting of an online solid phase extraction (SPE) coupled to an analytical column. For quantification, stable isotope-labelled analogues were used as internal standards for all analytes. The method was validated on the basis of the European Medicines Agency bioanalytical method validation protocol.. Detuning of lopinavir and ritonavir allowed simultaneous quantification of all analytes with different concentration ranges and sensitivity with a uniform injection volume of 5 μL. The method provided robust validation results with inaccuracy and imprecision values of ≤ 9.59 % and ≤ 11.1 % for all quality controls.. The presented method is suitable for accurate and simultaneous quantification of remdesivir, its metabolite GS-441525, chloroquine, hydroxychloroquine, lopinavir, ritonavir, favipiravir and azithromycin in human serum. The quantitative assay may be an efficient tool for the therapeutic drug monitoring of these potential drug candidates in COVID-19 patients in order to increase treatment efficacy and safety.

    Topics: Adenosine; Adenosine Monophosphate; Alanine; Amides; Antiviral Agents; Azithromycin; Chloroquine; Chromatography, Liquid; COVID-19; COVID-19 Drug Treatment; Furans; Humans; Hydroxychloroquine; Isotopes; Lopinavir; Pandemics; Pyrazines; Pyrroles; Ritonavir; SARS-CoV-2; Tandem Mass Spectrometry; Triazines

2021
Serum cytokine levels of COVID-19 patients after 7 days of treatment with Favipiravir or Kaletra.
    International immunopharmacology, 2021, Volume: 93

    Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that causes coronavirus disease 2019 (COVID-19) has infected 86,4 M patients and resulted in 1,86 M deaths worldwide. Severe COVID-19 patients have elevated blood levels of interleukin-6 (IL-6), IL-1β, tumor necrosis factor (TNF)α, IL-8 and interferon (IFN)γ.. To investigate the effect of antiviral treatment serum cytokines in severe COVID-19 patients.. Blood was obtained from 29 patients (aged 32-79 yr) with laboratory-confirmed COVID-19 upon admission and 7 days after antiviral (Favipiravir or Lopinavir/Ritonavir) treatment. Patients also received standard supportive treatment in this retrospective observational study. Chest computed tomography (CT) scans were evaluated to investigate lung manifestations of COVID-19. Serum was also obtained and cytokines levels were evaluated. 19 age- and gender-matched healthy controls were studied.. Anti-viral therapy significantly reduced CT scan scores and the elevated serum levels of C-reactive protein (CRP) and lactate dehydrogenase (LDH). In contrast, serum levels of IL-6, IL-8 and IFNγ were elevated at baseline in COVID-19 subjects compared to healthy subjects with IL-6 (p = 0.006) and IL-8 (p = 0.011) levels being further elevated after antiviral therapy. IL-1β (p = 0.01) and TNFα (p = 0.069) levels were also enhanced after treatment but baseline levels were similar to those of healthy controls. These changes occurred irrespective of whether patients were admitted to the intensive care unit.. Antiviral treatments did not suppress the inflammatory phase of COVID-19 after 7 days treatment although CT, CRP and LDH suggest a decline in lung inflammation. There was limited evidence for a viral-mediated cytokine storm in these COVID-19 subjects.

    Topics: Adult; Aged; Amides; Antiviral Agents; COVID-19; COVID-19 Drug Treatment; Cytokines; Drug Combinations; Female; Humans; Lopinavir; Male; Middle Aged; Pyrazines; Retrospective Studies; Ritonavir; SARS-CoV-2

2021
The comparison of favipiravir and lopinavir/ritonavir combination in COVID-19 treatment
    Turkish journal of medical sciences, 2021, 08-30, Volume: 51, Issue:4

    SARS-CoV-2, a ribonucleic acid coronavirus, rapidly spread worldwide within a short timeframe. Although different antiviral, antiinflammatory, and immunomodulatory drugs are used, current evidence is insufficient as to which drug is more efficient. Our study compared favipiravir and lopinavir/ritonavir (LPV/RTV) therapies in inpatient care for coronavirus disease 2019 (COVID-19) pneumonia.. Demographic data, test results, treatments, and latest status of patients receiving inpatient COVID-19 pneumonia therapy were recorded. The initial favipiravir and LPV/RTV receiving groups were compared regarding the need for intensive care units (ICU) and mortality. Logistic regression analysis was performed by including variables showing significant differences as a result of paired comparisons into the model.. Of the 204 patients with COVID-19 pneumonia, 59 (28.9%), 131 (64.2%), and 14 were administered LPV/RTV, favipiravir, and favipiravir with LPV/RTV, respectively. No difference was found in age, sex, presence of comorbidity, and tocilizumab, systemic corticosteroid, and plasma therapy use between patients administered with these three different treatment regimens. The mean mortality age of the patients was 71 ± 14.3 years, which was substantially greater than that of the survivors (54.2 ± 15.5 years). Compared with patients administered with LPV/RTV, ICU admission and mortality rates were lower in patients administered with favipiravir. CK-MB, AST, CRP, LDH, and creatinine levels were higher, whereas lymphocyte counts were lower in patients who died. Age, AST, CRP, LDH, and neutrophil counts were higher in patients needing ICU, and eosinophil and lymphocyte counts were significantly lower. Logistic regression analysis showed that favipiravir use independently decreased mortality (p = 0.006).. The use of favipiravir was more effective than LPV/RTV in reducing mortality in hospitalized patients with COVID-19.

    Topics: Aged; Amides; Antiviral Agents; COVID-19 Drug Treatment; Drug Therapy, Combination; Female; HIV Protease Inhibitors; Humans; Lopinavir; Male; Middle Aged; Pyrazines; Retrospective Studies; Ritonavir; SARS-CoV-2; Treatment Outcome

2021
Epidemiology, clinical characteristics, and treatment outcomes of patients with COVID-19 at Thailand's university-based referral hospital.
    BMC infectious diseases, 2021, Apr-26, Volume: 21, Issue:1

    The epidemiology and outcomes of COVID-19 patients in Thailand are scarce.. This retrospective cohort study included adult hospitalized patients who were diagnosed with COVID-19 at Siriraj Hospital during February 2020 to April 2020.. The prevalence of COVID-19 was 7.5% (107 COVID-19 patients) among 1409 patients who underwent RT-PCR for SARS-CoV-2 detection at our hospital during the outbreak period. Patients with COVID-19 presented with symptoms in 94.4%. Among the 104 patients who were treated with antiviral medications, 78 (75%) received 2-drug regimen (lopinavir/ritonavir or darunavir/ritonavir plus chloroquine or hydroxychloroquine), and 26 (25%) received a 3-drug regimen with favipiravir added to the 2-drug regimen. Disease progression was observed in 18 patients (16.8%). All patients with COVID-19 were discharged alive.. The prevalence of COVID-19 was 7.5% among patients who underwent RT-PCR testing, and 10% among those having risk factors for COVID-19 acquisition. Combination antiviral therapies for COVID-19 patients were well-tolerated and produced a favorable outcome.

    Topics: Adult; Aged; Aged, 80 and over; Amides; Antiviral Agents; Chloroquine; COVID-19; COVID-19 Drug Treatment; Darunavir; Disease Progression; Drug Combinations; Female; Hospitals; Hospitals, University; Humans; Hydroxychloroquine; Lopinavir; Male; Middle Aged; Pyrazines; Referral and Consultation; Retrospective Studies; Ritonavir; Thailand; Treatment Outcome; Young Adult

2021
Combination of (interferon beta-1b, lopinavir/ritonavir and ribavirin) versus favipiravir in hospitalized patients with non-critical COVID-19: A cohort study.
    PloS one, 2021, Volume: 16, Issue:6

    Our study aims at comparing the efficacy and safety of IFN-based therapy (lopinavir/ritonavir, ribavirin, and interferon β-1b) vs. favipiravir (FPV) in a cohort of hospitalized patients with non-critical COVID-19.. Single center observational study comparing IFN-based therapy (interferon β-1b, ribavirin, and lopinavir/ritonavir) vs. FPV in non-critical hospitalized COVID-19 patients. Allocation to either treatment group was non-random but based on changes to national treatment protocols rather than physicians' selection (quasi-experimental). We examined the association between IFN-based therapy and 28-day mortality using Cox regression model with treatment as a time-dependent covariate.. The study cohort included 222 patients, of whom 68 (28%) received IFN-based therapy. Antiviral therapy was started at a median of 5 days (3-6 days) from symptoms onset in the IFN group vs. 6 days (4-7 days) for the FPV group, P <0.0001. IFN-based therapy was associated with a lower 28-day mortality as compared to FPV (6 (9%) vs. 18 (12%)), adjusted hazard ratio [aHR] (95% Cl) = 0.27 (0.08-0.88)). No difference in hospitalization duration between the 2 groups, 9 (7-14) days vs. 9 (7-13) days, P = 0.732 was found. IFN treated group required less use of systemic corticosteroids (57%) as compared to FPV (77%), P = 0.005 after adjusting for disease severity and other confounders. Patients in the IFN treated group were more likely to have nausea and diarrhea as compared to FPV group (13%) vs. (3%), P = 0.013 and (18%) vs. (3%), P<0.0001, respectively.. Early IFN-based triple therapy was associated with lower 28-days mortality as compared to FPV.

    Topics: Adult; Aged; Amides; Antiviral Agents; COVID-19 Drug Treatment; Drug Therapy, Combination; Female; Hospitalization; Humans; Interferon beta-1b; Lopinavir; Male; Middle Aged; Prospective Studies; Pyrazines; Ribavirin; Ritonavir; SARS-CoV-2

2021
Advance of promising targets and agents against COVID-19 in China.
    Drug discovery today, 2020, Volume: 25, Issue:5

    Topics: Adenine; Adenosine Monophosphate; Alanine; Amides; Antimalarials; Antiviral Agents; Betacoronavirus; China; Chloroquine; Clinical Trials as Topic; Cobicistat; Coronavirus 3C Proteases; Coronavirus Infections; COVID-19; COVID-19 Drug Treatment; Cysteine Endopeptidases; Dibenzothiepins; Drug Combinations; Drug Discovery; Drug Therapy, Combination; Emtricitabine; Humans; Hydroxychloroquine; Indoles; Lopinavir; Medicine, Chinese Traditional; Morpholines; Oseltamivir; Oxazines; Pandemics; Pneumonia, Viral; Pyrazines; Pyridines; Pyridones; Ritonavir; RNA-Dependent RNA Polymerase; SARS-CoV-2; Spike Glycoprotein, Coronavirus; Tenofovir; Thiepins; Triazines; Viral Nonstructural Proteins

2020
SARS-CoV-2: Recent Reports on Antiviral Therapies Based on Lopinavir/Ritonavir, Darunavir/Umifenovir, Hydroxychloroquine, Remdesivir, Favipiravir and other Drugs for the Treatment of the New Coronavirus.
    Current medicinal chemistry, 2020, Volume: 27, Issue:27

    Here we report on the most recent updates on experimental drugs successfully employed in the treatment of the disease caused by SARS-CoV-2 coronavirus, also referred to as COVID-19 (COronaVIrus Disease-19). In particular, several cases of recovered patients have been reported after being treated with lopinavir/ritonavir [which is widely used to treat Human Immunodeficiency Virus (HIV) infection] in combination with the anti-flu drug oseltamivir. In addition, remdesivir, which has been previously administered to Ebola virus patients, has also proven effective in the U.S. against coronavirus, while antimalarial chloroquine and hydroxychloroquine, favipiravir and co-administered darunavir and umifenovir (in patient therapies) were also recently recorded as having anti-SARS-CoV-2 effects. Since the recoveries/deaths ratio in the last weeks significantly increased, especially in China, it is clear that the experimental antiviral therapy, together with the availability of intensive care unit beds in hospitals and rigorous government control measures, all play an important role in dealing with this virus. This also stresses the urgent need for the scientific community to devote its efforts to the development of other more specific antiviral strategies.

    Topics: Adenosine Monophosphate; Alanine; Amides; Antiviral Agents; Betacoronavirus; China; Coronavirus Infections; COVID-19; COVID-19 Drug Treatment; Darunavir; Drug Combinations; Humans; Hydroxychloroquine; Indoles; Lopinavir; Pandemics; Pneumonia, Viral; Pyrazines; Ritonavir; SARS-CoV-2

2020
Anticancer drugs and COVID-19 antiviral treatments in patients with cancer: What can we safely use?
    European journal of cancer (Oxford, England : 1990), 2020, Volume: 136

    Topics: Amides; Antibodies, Monoclonal, Humanized; Antineoplastic Agents; Antineoplastic Agents, Hormonal; Antineoplastic Agents, Immunological; Antiviral Agents; Betacoronavirus; Chemical and Drug Induced Liver Injury; Coronavirus Infections; COVID-19; COVID-19 Drug Treatment; Cytochrome P-450 Enzyme System; Drug Combinations; Drug Interactions; Histone Deacetylase Inhibitors; Humans; Hydroxychloroquine; Immunosuppression Therapy; Kidney Diseases; Long QT Syndrome; Lopinavir; Neoplasms; Pandemics; Pneumonia, Viral; Poly(ADP-ribose) Polymerase Inhibitors; Proteasome Inhibitors; Protein Kinase Inhibitors; Pyrazines; Ritonavir; SARS-CoV-2

2020
Signal amplification by reversible exchange for COVID-19 antiviral drug candidates.
    Scientific reports, 2020, 08-31, Volume: 10, Issue:1

    Several drug candidates have been proposed and tested as the latest clinical treatment for coronavirus pneumonia (COVID-19). Chloroquine, hydroxychloroquine, ritonavir/lopinavir, and favipiravir are under trials for the treatment of this disease. The hyperpolarization technique has the ability to further provide a better understanding of the roles of these drugs at the molecular scale and in different applications in the field of nuclear magnetic resonance/magnetic resonance imaging. This technique may provide new opportunities in diagnosis and research of COVID-19. Signal amplification by reversible exchange-based hyperpolarization studies on large-sized drug candidates were carried out. We observed hyperpolarized proton signals from whole structures, due to the unprecedented long-distance polarization transfer by para-hydrogen. We also found that the optimal magnetic field for the maximum polarization transfer yield was dependent on the molecular structure. We can expect further research on the hyperpolarization of other important large molecules, isotope labeling, as well as polarization transfer on nuclei with a long spin relaxation time. A clinical perspective of these features on drug molecules can broaden the application of hyperpolarization techniques for therapeutic studies.

    Topics: Amides; Antiviral Agents; Betacoronavirus; Chloroquine; Coronavirus Infections; COVID-19; Drug Discovery; Humans; Lopinavir; Molecular Structure; Nuclear Magnetic Resonance, Biomolecular; Pandemics; Pneumonia, Viral; Pyrazines; Ritonavir; SARS-CoV-2

2020
Gender differences in treatment of Coronavirus Disease-2019.
    Monaldi archives for chest disease = Archivio Monaldi per le malattie del torace, 2020, Dec-03, Volume: 90, Issue:4

    Coronavirus Disease-2019 (COVID-19) is the worst worldwide pandemic with more than 12,000,000 cases and 560,000 deaths until 14th July 2020. Men were more infected by COVID-19 than women, and male subjects with underlying conditions, including diabetes, hypertension, and cardiovascular diseases developed a severe form of the affection, with increased mortality rate. Many factors can contribute to the disparity in disease outcomes, such as hormone-specific reaction and activity of X-linked genes, which modulate the innate and adaptive immune response to virus infection. Until now, only the Remdesivir was approved by FDA (Food Drug Administration) for COVID-19 treatment, although several clinical trials are ongoing worldwide also on other drugs. In this review, we analyzed published studies on several drugs (chloroquine or hydroxychloroquine, remdesivir, favipiravir, lopinavir-ritonavir in combination, tocilizumab, plasma, and immunoglobulins) with some efficacy to COVID-19 in humans, and evaluated if there were a gender analysis of the available data. In our opinion, it is essential to report data about COVID-19 disaggregated by sex, age, and race, because the knowledge of gender differences is fundamental to identify effective and customized treatments to reduce hospitalizations, admissions to intensive care units, and mortality.

    Topics: Adenosine Monophosphate; Adult; Aged; Alanine; Amides; Antimalarials; Antiviral Agents; Cardiovascular Diseases; Chloroquine; Clinical Trials as Topic; Combined Modality Therapy; COVID-19; COVID-19 Drug Treatment; COVID-19 Serotherapy; Diabetes Complications; Female; Humans; Hypertension; Immunity; Immunization, Passive; Immunoglobulins; Lopinavir; Male; Middle Aged; Mortality; Pandemics; Pyrazines; Ritonavir; SARS-CoV-2; Sex Characteristics

2020