ritonavir and artenimol

ritonavir has been researched along with artenimol* in 3 studies

Trials

3 trial(s) available for ritonavir and artenimol

ArticleYear
The interaction between artemether-lumefantrine and lopinavir/ritonavir-based antiretroviral therapy in HIV-1 infected patients.
    BMC infectious diseases, 2016, Jan-27, Volume: 16

    Artemether-lumefantrine is currently the most widely recommended treatment of uncomplicated malaria. Lopinavir-based antiretroviral therapy is the commonly recommended second-line HIV treatment. Artemether and lumefantrine are metabolised by cytochrome P450 isoenzyme CYP3A4, which lopinavir/ritonavir inhibits, potentially causing clinically important drug-drug interactions.. An adaptive, parallel-design safety and pharmacokinetic study was conducted in HIV-infected (malaria-negative) patients: antiretroviral-naïve and those stable on lopinavir/ritonavir-based antiretrovirals. Both groups received the recommended six-dose artemether-lumefantrine treatment. The primary outcome was day-7 lumefantrine concentrations, as these correlate with antimalarial efficacy. Adverse events were solicited throughout the study, recording the onset, duration, severity, and relationship to artemether-lumefantrine.. We enrolled 34 patients. Median day-7 lumefantrine concentrations were almost 10-fold higher in the lopinavir than the antiretroviral-naïve group [3170 versus 336 ng/mL; p = 0.0001], with AUC(0-inf) and Cmax increased five-fold [2478 versus 445 μg.h/mL; p = 0.0001], and three-fold [28.2 versus 8.8 μg/mL; p < 0.0001], respectively. Lumefantrine Cmax, and AUC(0-inf) increased significantly with mg/kg dose in the lopinavir, but not the antiretroviral-naïve group. While artemether exposure was similar between groups, Cmax and AUC(0-8h) of its active metabolite dihydroartemisinin were initially two-fold higher in the lopinavir group [p = 0.004 and p = 0.0013, respectively]. However, this difference was no longer apparent after the last artemether-lumefantrine dose. Within 21 days of starting artemether-lumefantrine there were similar numbers of treatment emergent adverse events (42 vs. 35) and adverse reactions (12 vs. 15, p = 0.21) in the lopinavir and antiretroviral-naïve groups, respectively. There were no serious adverse events and no difference in electrocardiographic QTcF- and PR-intervals, at the predicted lumefantrine Tmax.. Despite substantially higher lumefantrine exposure, intensive monitoring in our relatively small study raised no safety concerns in HIV-infected patients stable on lopinavir-based antiretroviral therapy given the recommended artemether-lumefantrine dosage. Increased day-7 lumefantrine concentrations have been shown previously to reduce the risk of malaria treatment failure, but further evidence in adult patients co-infected with malaria and HIV is needed to assess the artemether-lumefantrine risk : benefit profile in this vulnerable population fully. Our antiretroviral-naïve patients confirmed previous findings that lumefantrine absorption is almost saturated at currently recommended doses, but this dose-limited absorption was overcome in the lopinavir group.. Clinical Trial Registration number NCT00869700. Registered on clinicaltrials.gov 25 March 2009.

    Topics: Adult; Anti-HIV Agents; Artemether; Artemisinins; Drug Interactions; Ethanolamines; Female; Fluorenes; HIV Infections; HIV-1; Humans; Lopinavir; Lumefantrine; Male; Ritonavir

2016
Artemisinin-based combination therapies are efficacious and safe for treatment of uncomplicated malaria in HIV-infected Ugandan children.
    Clinical infectious diseases : an official publication of the Infectious Diseases Society of America, 2014, Aug-01, Volume: 59, Issue:3

    Artemisinin-based combination therapies (ACTs) are highly efficacious and safe, but data from human immunodeficiency virus (HIV)-infected children concurrently receiving antiretroviral therapy (ART) and ACTs are limited.. We evaluated 28-day outcomes following malaria treatment with artemether-lumefantrine (AL) or dihydroartemisinin-piperaquine (DP) in 2 cohorts of HIV-infected Ugandan children taking various ART regimens. In one cohort, children <6 years of age were randomized to lopinavir/ritonavir (LPV/r) or nonnucleoside reverse transcriptase inhibitor-based ART and treated with AL for uncomplicated malaria. In another cohort, children <12 months of age were started on nevirapine-based ART if they were eligible, and randomized to AL or DP for the treatment of their first and all subsequent uncomplicated malaria episodes.. There were 773 and 165 treatments for malaria with AL and DP, respectively. Initial response to therapy was excellent, with 99% clearance of parasites and <1% risk of repeat therapy within 3 days. Recurrent parasitemia within 28 days was common following AL treatment. The risk of recurrent parasitemia was significantly lower among children taking LPV/r-based ART compared with children taking nevirapine-based ART following AL treatment (15.3% vs 35.5%, P = .009), and those treated with DP compared with AL (8.6% vs 36.2%, P < .001). Both ACT regimens were safe and well tolerated.. Treatment of uncomplicated malaria with AL or DP was efficacious and safe in HIV-infected children taking ART. However, there was a high risk of recurrent parasitemia following AL treatment, which was significantly lower in children taking LPV/r-based ART compared with nevirapine-based ART.

    Topics: Antimalarials; Artemisinins; Child, Preschool; Cohort Studies; Drug Therapy, Combination; Female; HIV Infections; HIV Protease Inhibitors; Humans; Infant; Lopinavir; Malaria; Male; Nevirapine; Parasitemia; Quinolines; Reverse Transcriptase Inhibitors; Ritonavir; Treatment Outcome; Uganda

2014
Drug-drug interaction analysis of pyronaridine/artesunate and ritonavir in healthy volunteers.
    The American journal of tropical medicine and hygiene, 2012, Volume: 86, Issue:3

    A multiple dose, parallel group study was conducted to assess for a drug-drug interaction between the pyronaridine/artesunate (PA) combination antimalarial and ritonavir. Thirty-four healthy adults were randomized (1:1) to receive PA for 3 days or PA with ritonavir (100 mg twice daily for 17 days, PA administered on Days 8-10). Pharmacokinetic parameters for pyronaridine, artesunate, and its active metabolite dihydroartemisinin (DHA) were obtained after the last PA dose and for ritonavir on Days 1 and 10. Ritonavir coadministration did not markedly change pyronaridine pharmacokinetics but resulted in a 27% increase in artesunate area under the curve (AUC) and a 38% decrease in DHA AUC. Ritonavir exposure was increased 3.2-fold in the presence of PA. The only relevant safety observations were increases in liver enzymes, only reaching a clinically significant grade in the PA + ritonavir arm. It was concluded that coadministered ritonavir and PA interact to alter exposure to artesunate, DHA, and ritonavir itself.

    Topics: Adolescent; Adult; Antimalarials; Area Under Curve; Artemisinins; Artesunate; Drug Interactions; Female; HIV Protease Inhibitors; Humans; Male; Middle Aged; Naphthyridines; Ritonavir; Young Adult

2012