Page last updated: 2024-08-16

ritanserin and homovanillic acid

ritanserin has been researched along with homovanillic acid in 9 studies

Research

Studies (9)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's5 (55.56)18.2507
2000's4 (44.44)29.6817
2010's0 (0.00)24.3611
2020's0 (0.00)2.80

Authors

AuthorsStudies
Bellows, DS; Clarke, ID; Diamandis, P; Dirks, PB; Graham, J; Jamieson, LG; Ling, EK; Sacher, AG; Tyers, M; Ward, RJ; Wildenhain, J1
Austin, CP; Fidock, DA; Hayton, K; Huang, R; Inglese, J; Jiang, H; Johnson, RL; Su, XZ; Wellems, TE; Wichterman, J; Yuan, J1
Brazell, C; Campbell, IC; Mitchell, S; Stahl, SM; Twist, EC1
Hietala, J; Koulu, M; Lappalainen, J; Sjöholm, B; Syvälahti, E1
Abbate, GM; Nieduzak, TR; Schmidt, CJ; Taylor, VL1
Furukawa, H; Hasegawa, T; Kitaichi, K; Nabeshima, T; Yamada, K1
Fadayel, GM; Schmidt, CJ1
Chilmonczyk, Z; Cybulski, M; Duszyńska, B; Dziubina, A; Gołembiowska, K; Iskra-Jopa, J1
Forsberg, MM; Kääriäinen, TM; Käenmäki, M; Lehtonen, M; Männistö, PT; Savolainen, J1

Other Studies

9 other study(ies) available for ritanserin and homovanillic acid

ArticleYear
Chemical genetics reveals a complex functional ground state of neural stem cells.
    Nature chemical biology, 2007, Volume: 3, Issue:5

    Topics: Animals; Cell Survival; Cells, Cultured; Mice; Molecular Structure; Neoplasms; Neurons; Pharmaceutical Preparations; Sensitivity and Specificity; Stem Cells

2007
Genetic mapping of targets mediating differential chemical phenotypes in Plasmodium falciparum.
    Nature chemical biology, 2009, Volume: 5, Issue:10

    Topics: Animals; Antimalarials; ATP Binding Cassette Transporter, Subfamily B, Member 1; Chromosome Mapping; Crosses, Genetic; Dihydroergotamine; Drug Design; Drug Resistance; Humans; Inhibitory Concentration 50; Mutation; Plasmodium falciparum; Quantitative Trait Loci; Transfection

2009
5HT2 receptor changes in rat cortex and platelets following chronic ritanserin and clorgyline administration.
    Biochemical pharmacology, 1990, Jan-01, Volume: 39, Issue:1

    Topics: Animals; Blood Platelets; Cerebral Cortex; Clorgyline; Homovanillic Acid; Hydroxyindoleacetic Acid; Ketanserin; Lysergic Acid Diethylamide; Male; Norepinephrine; Piperidines; Propylamines; Rats; Rats, Inbred Strains; Receptors, Serotonin; Ritanserin; Serotonin

1990
Effects of acute administration of SCH 23390 on dopamine and serotonin turnover in major dopaminergic areas and mesencephalic raphe nuclei--comparison with ritanserin.
    Progress in neuro-psychopharmacology & biological psychiatry, 1991, Volume: 15, Issue:6

    Topics: 3,4-Dihydroxyphenylacetic Acid; Animals; Aromatic Amino Acid Decarboxylase Inhibitors; Benzazepines; Biogenic Monoamines; Corpus Striatum; Dopamine; Homovanillic Acid; Hydrazines; Hydroxyindoleacetic Acid; In Vitro Techniques; Limbic System; Male; Mesencephalon; Raphe Nuclei; Rats; Rats, Inbred Strains; Ritanserin; Serotonin; Serotonin Antagonists; Substantia Nigra

1991
5-HT2 antagonists stereoselectively prevent the neurotoxicity of 3,4-methylenedioxymethamphetamine by blocking the acute stimulation of dopamine synthesis: reversal by L-dopa.
    The Journal of pharmacology and experimental therapeutics, 1991, Volume: 256, Issue:1

    Topics: 3,4-Dihydroxyphenylacetic Acid; 3,4-Methylenedioxyamphetamine; Animals; Anti-Arrhythmia Agents; Brain; Corpus Striatum; Dopamine; Dose-Response Relationship, Drug; Drug Synergism; Haloperidol; Homovanillic Acid; Levodopa; Male; Nomifensine; Piperidines; Rats; Rats, Inbred Strains; Ritanserin; Serotonin Antagonists; Stereoisomerism; Time Factors

1991
Effects of risperidone on phencyclidine-induced behaviors: comparison with haloperidol and ritanserin.
    Japanese journal of pharmacology, 1994, Volume: 66, Issue:2

    Topics: 3,4-Dihydroxyphenylacetic Acid; Animals; Antipsychotic Agents; Chromatography, High Pressure Liquid; Corpus Striatum; Dopamine; Dose-Response Relationship, Drug; Frontal Lobe; Haloperidol; Homovanillic Acid; Hydroxyindoleacetic Acid; Injections, Intraperitoneal; Isoxazoles; Locomotion; Male; Phencyclidine; Piperidines; Random Allocation; Rats; Rats, Wistar; Risperidone; Ritanserin; Schizophrenia; Serotonin; Stereotyped Behavior

1994
The selective 5-HT2A receptor antagonist, MDL 100,907, increases dopamine efflux in the prefrontal cortex of the rat.
    European journal of pharmacology, 1995, Feb-06, Volume: 273, Issue:3

    Topics: 3,4-Dihydroxyphenylacetic Acid; Animals; Behavior, Animal; Dopamine; Electrophysiology; Fluorobenzenes; Homovanillic Acid; In Vitro Techniques; Male; Microdialysis; Piperidines; Prefrontal Cortex; Rats; Rats, Sprague-Dawley; Ritanserin; Serotonin Antagonists

1995
In-vivo effects of the 1,2,4-piperazine derivatives MM5 and MC1, putative 5-HT agonists, on dopamine and serotonin release in rat prefrontal cortex.
    The Journal of pharmacy and pharmacology, 2005, Volume: 57, Issue:2

    Topics: 3,4-Dihydroxyphenylacetic Acid; 8-Hydroxy-2-(di-n-propylamino)tetralin; Animals; Dopamine; Extracellular Fluid; Homovanillic Acid; Male; Microdialysis; Piperazines; Piperidones; Poland; Prefrontal Cortex; Pyridines; Radioligand Assay; Rats; Rats, Wistar; Receptor, Serotonin, 5-HT1A; Receptor, Serotonin, 5-HT2A; Ritanserin; Serotonin; Serotonin 5-HT1 Receptor Agonists; Serotonin 5-HT2 Receptor Agonists; Spiro Compounds; Structure-Activity Relationship

2005
Comparison of the effects of deramciclane, ritanserin and buspirone on extracellular dopamine and its metabolites in striatum and nucleus accumbens of freely moving rats.
    Basic & clinical pharmacology & toxicology, 2008, Volume: 102, Issue:1

    Topics: 3,4-Dihydroxyphenylacetic Acid; Animals; Anti-Anxiety Agents; Buspirone; Camphanes; Chromatography, High Pressure Liquid; Corpus Striatum; Dopamine; Homovanillic Acid; Male; Microdialysis; Motor Activity; Nucleus Accumbens; Rats; Rats, Wistar; Ritanserin

2008