rifamycin-sv has been researched along with estradiol-17-beta-glucuronide* in 5 studies
5 other study(ies) available for rifamycin-sv and estradiol-17-beta-glucuronide
Article | Year |
---|---|
Classification of inhibitors of hepatic organic anion transporting polypeptides (OATPs): influence of protein expression on drug-drug interactions.
The hepatic organic anion transporting polypeptides (OATPs) influence the pharmacokinetics of several drug classes and are involved in many clinical drug-drug interactions. Predicting potential interactions with OATPs is, therefore, of value. Here, we developed in vitro and in silico models for identification and prediction of specific and general inhibitors of OATP1B1, OATP1B3, and OATP2B1. The maximal transport activity (MTA) of each OATP in human liver was predicted from transport kinetics and protein quantification. We then used MTA to predict the effects of a subset of inhibitors on atorvastatin uptake in vivo. Using a data set of 225 drug-like compounds, 91 OATP inhibitors were identified. In silico models indicated that lipophilicity and polar surface area are key molecular features of OATP inhibition. MTA predictions identified OATP1B1 and OATP1B3 as major determinants of atorvastatin uptake in vivo. The relative contributions to overall hepatic uptake varied with isoform specificities of the inhibitors. Topics: Atorvastatin; Biological Transport; Drug Interactions; Estradiol; Estrone; HEK293 Cells; Heptanoic Acids; Humans; Hydroxymethylglutaryl-CoA Reductase Inhibitors; In Vitro Techniques; Least-Squares Analysis; Liver; Liver-Specific Organic Anion Transporter 1; Models, Molecular; Multivariate Analysis; Organic Anion Transporters; Organic Anion Transporters, Sodium-Independent; Protein Isoforms; Pyrroles; Solute Carrier Organic Anion Transporter Family Member 1B3; Structure-Activity Relationship; Transfection | 2012 |
Validation of cell-based OATP1B1 assays to assess drug transport and the potential for drug-drug interaction to support regulatory submissions.
Transporters are carrier proteins that may influence pharmacokinetic, pharmacodynamic, and toxicological characteristics of drugs. The development of validated in vitro transporter models is imperative to support regulatory submissions of drug candidates. This study is focused on utilizing human embryonic kidney (HEK) 293 cell cultures genetically transfected with the human organic anion transporting polypeptides (OATP) 1B1 transporter to identify substrates and inhibitors in drug development. The kinetics of OATP1B1-mediated uptake of [(3)H]-oestradiol 17beta-glucuronide and inhibition of uptake by rifamycin SV were used to determine K(m), V(max), and IC(50) values over a range of passage numbers to investigate accuracy and precision. The mean K(m) and V(max) values were found to be 6.3 +/- 1.2 microM and 460 +/- 96 pmol min(-1) mg(-1), respectively. The mean IC(50) value for rifamycin SV was 0.23 +/- 0.07 microM on uptake of 1 microM [(3)H]-oestradiol 17beta-glucuronide. These data were similar to previously reported values (accuracy greater than 82%), reproducible (precision less than 29%) and exhibited low standard deviations (SDs) obviating the need to study test compounds on more than one occasion. [(3)H]-oestrone 3-sulfate and [(3)H]-pravastatin exhibited concentration-dependent OATP1B1 uptake, and statistically significant differences were observed at each concentration between uptake rates of HEK293-OATP1B1 and HEK293-MOCK cells (uptake ratios greater than or equal to 3). Propranolol showed no positive uptake ratio. Bezafibrate and gemfibrozil exhibited concentration-dependent inhibition of OATP1B1-mediated uptake of [(3)H]-oestradiol 17beta-glucuronide with mean IC(50) values of 16 and 27 microM, respectively. Based on the validation results, acceptance criteria to identify a test compound as a substrate and/or inhibitor using these specific cell lines were determined. These validated OATP1B1 assays were robust, reproducible, and suitable for routine in vitro evaluation of candidate drugs. Topics: Antirheumatic Agents; Bezafibrate; Biological Transport; Cell Line; Drug Interactions; Estradiol; Gemfibrozil; Humans; Hypolipidemic Agents; Kidney; Kinetics; Liver-Specific Organic Anion Transporter 1; Organic Anion Transporters; Rifamycins | 2010 |
Differential interaction of 3-hydroxy-3-methylglutaryl-coa reductase inhibitors with ABCB1, ABCC2, and OATP1B1.
The present study examined the interaction of four 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors (atorvastatin, lovastatin, and simvastatin in acid and lactone forms, and pravastatin in acid form only) with multidrug resistance gene 1 (MDR1, ABCB1) P-glycoprotein, multidrug resistance-associated protein 2 (MRP2, ABCC2), and organic anion-transporting polypeptide 1B1 (OATP1B1, SLCO21A6). P-glycoprotein substrate assays were performed using Madin-Darby canine kidney (MDCK) cells expressing MDR1, and the efflux ratios [the ratio of the ratio of basolateral-to-apical apparent permeability and apical-to-basolateral permeability between MDR1 and MDCK] were 1.87, 2.32/4.46, 2.17/3.17, and 0.93/2.00 for pravastatin, atorvastatin (lactone/acid), lovastatin (lactone/acid), and simvastatin (lactone/acid), respectively, indicating that these compounds are weak or moderate substrates of P-glycoprotein. In the inhibition assays (MDR1, MRP2, Mrp2, and OATP1B1), the IC50 values for efflux transporters (MDR1, MRP2, and Mrp2) were >100 microM for all statins in acid form except lovastatin acid (>33 microM), and the IC50 values were up to 10-fold lower for the corresponding lactone forms. In contrast, the IC50 values for the uptake transporter OATP1B1 were 3- to 7-fold lower for statins in the acid form compared with the corresponding lactone form. These data demonstrate that lactone and acid forms of statins exhibit differential substrate and inhibitor activities toward efflux and uptake transporters. The interconversion between the lactone and acid forms of most statins exists in the body and will potentially influence drug-transporter interactions, and may ultimately contribute to the differences in pharmacokinetic profiles observed between statins. Topics: Adenosine Triphosphate; Animals; Atorvastatin; ATP Binding Cassette Transporter, Subfamily B, Member 1; Cell Line; Dogs; Estradiol; Fluoresceins; Heptanoic Acids; Hydrolysis; Hydroxymethylglutaryl-CoA Reductase Inhibitors; Lovastatin; Membrane Transport Proteins; Multidrug Resistance-Associated Protein 2; Multidrug Resistance-Associated Proteins; Organic Anion Transporters; Permeability; Pyrroles; Simvastatin; Structure-Activity Relationship | 2005 |
Drug- and estrogen-induced cholestasis through inhibition of the hepatocellular bile salt export pump (Bsep) of rat liver.
Drug-induced cholestasis is a frequent form of acquired liver disease. To elucidate the molecular pathogenesis of drug-induced cholestasis, we investigated the effects of prototypic cholestatic drugs on the canalicular bile salt export pump (Bsep) of rat liver.. Vesicles were isolated from Bsep-, Mrp2-, and Bsep/Mrp2-expressing Sf9 cells. Canalicular plasma membrane (cLPM) vesicles from rat liver and Sf9 cell vesicles were used to study adenosine triphosphate (ATP)-dependent solute uptake by a rapid filtration technique.. Bsep-expressing Sf9 cell vesicles showed ATP-dependent transport of numerous monoanionic bile salts with similar Michaelis constant values as in cLPM vesicles, whereas several known substrates of the multispecific organic anion transporter Mrp2 were not transported by Bsep. Cyclosporin A, rifamycin SV, rifampicin, and glibenclamide cis-inhibited Bsep-mediated bile salt transport to similar extents as ATP-dependent taurocholate transport in cLPM vesicles. In contrast, the cholestatic estrogen metabolite estradiol-17beta-glucuronide inhibited ATP-dependent taurocholate transport only in normal cLPM and in Bsep/Mrp2-coexpressing Sf9 cell vesicles, but not in Mrp2-deficient cLPM or in selectively Bsep-expressing Sf9 cell vesicles, indicating that it trans-inhibits Bsep only after its secretion into bile canaliculi by Mrp2.. These results provide a molecular basis for previous in vivo observations and identify Bsep as an important target for induction of drug- and estrogen-induced cholestasis in mammalian liver. Topics: Adenosine Triphosphate; Animals; Anion Transport Proteins; ATP Binding Cassette Transporter, Subfamily B, Member 11; ATP-Binding Cassette Transporters; Bile Acids and Salts; Biological Transport; Carrier Proteins; Cell Line; Cyclosporine; Estradiol; Glyburide; Kinetics; Liver; Rats; Recombinant Proteins; Rifampin; Rifamycins; Spodoptera; Taurocholic Acid; Transfection | 2000 |
Rifamycin SV and rifampicin exhibit differential inhibition of the hepatic rat organic anion transporting polypeptides, Oatp1 and Oatp2.
The antibiotics, rifamycin SV and rifampicin, are known to interfere with hepatic bile salt and organic anion uptake. The aim of this study was to explore which transport systems are affected. In short-term-cultured rat hepatocytes, low concentrations (10 micromol/L) of both compounds inhibited mainly sodium-independent taurocholate uptake, whereas higher concentrations (100 micromol/L) also inhibited sodium-dependent taurocholate uptake. In Xenopus laevis oocytes expressing the Na(+)/taurocholate cotransporting polypeptide (Ntcp), high rifamycin SV and rifampicin concentrations were required for inhibition of taurocholate uptake. In contrast, sodium-independent taurocholate uptake mediated by the organic anion transporting polypeptides, Oatp1 and Oatp2, was already substantially inhibited by 10 micromol/L rifamycin SV. Rifampicin potently inhibited Oatp2-mediated taurocholate uptake, but did not interfere with Oatp1-mediated taurocholate uptake. Similar effects of rifamycin SV and rifampicin were found for Oatp1- and Oatp2-mediated estradiol-17beta-glucuronide transport. Dixon plot analysis yielded a pattern compatible with competitive inhibition of estradiol-17beta-glucuronide transport with K(i) estimates of 6.6 micromol/L and 7.3 micromol/L for rifamycin SV-induced inhibition of Oatp1 and Oatp2, respectively, and of 1.4 micromol/L for rifampicin-induced inhibition of Oatp2. These results demonstrate that rifamycin SV and rifampicin exhibit differential inhibition on Oatp1 and Oatp2, and identify rifampicin as a selective Oatp2 inhibitor. The data indicate that these inhibitors can be used to determine the in vivo relevance of Oatp1 and Oatp2 for the overall bioavailability and disposition of drugs and other Oatp1/2 substrates. Topics: Animals; Anion Transport Proteins; Anti-Bacterial Agents; Carrier Proteins; Estradiol; Liver; Male; Rats; Rats, Sprague-Dawley; Rifampin; Rifamycins | 2000 |