rifamycin-s has been researched along with mycothiol* in 2 studies
2 other study(ies) available for rifamycin-s and mycothiol
Article | Year |
---|---|
Targeted mutagenesis of the Mycobacterium smegmatis mca gene, encoding a mycothiol-dependent detoxification protein.
Mycothiol (MSH), a functional analogue of glutathione (GSH) that is found exclusively in actinomycetes, reacts with electrophiles and toxins to form MSH-toxin conjugates. Mycothiol S-conjugate amidase (Mca) then catalyzes the hydrolysis of an amide bond in the S conjugates, producing a mercapturic acid of the toxin, which is excreted from the bacterium, and glucosaminyl inositol, which is recycled back to MSH. In this study, we have generated and characterized an allelic exchange mutant of the mca gene of Mycobacterium smegmatis. The mca mutant accumulates the S conjugates of the thiol-specific alkylating agent monobromobimane and the antibiotic rifamycin S. Introduction of M. tuberculosis mca epichromosomally or introduction of M. smegmatis mca integratively resulted in complementation of Mca activity and reduced levels of S conjugates. The mutation in mca renders the mutant strain more susceptible to electrophilic toxins, such as N-ethylmalemide, iodoacetamide, and chlorodinitrobenzene, and to several oxidants, such as menadione and plumbagin. Additionally we have shown that the mca mutant is also more susceptible to the antituberculous antibiotic streptomycin. Mutants disrupted in genes belonging to MSH biosynthesis are also more susceptible to streptomycin, providing further evidence that Mca detoxifies streptomycin in the mycobacterial cell in an MSH-dependent manner. Topics: Amidohydrolases; Anti-Bacterial Agents; Bridged Bicyclo Compounds; Cysteine; Dinitrochlorobenzene; Disaccharides; Enzyme Inhibitors; Ethylmaleimide; Gene Deletion; Genes, Bacterial; Genetic Complementation Test; Glycopeptides; Inositol; Iodoacetamide; Mutagenesis, Insertional; Mycobacterium smegmatis; Mycobacterium tuberculosis; Naphthoquinones; Oxidants; Pyrazoles; Rifamycins; Streptomycin; Sulfhydryl Compounds; Vitamin K 3 | 2004 |
Characterization of Mycobacterium tuberculosis mycothiol S-conjugate amidase.
Mycothiol is comprised of N-acetylcysteine (AcCys) amide linked to 1D-myo-inosityl 2-amino-2-deoxy-alpha-D-glucopyranoside (GlcN-Ins) and is the predominant thiol found in most actinomycetes. Mycothiol S-conjugate amidase (Mca) cleaves the amide bond of mycothiol S-conjugates of a variety of alkylating agents and xenobiotics, producing GlcN-Ins and a mercapturic acid that can be excreted from the cell. Mca of Mycobacterium tuberculosis (Rv1082) was cloned and expressed as a soluble protein in Escherichia coli. The protein contained 1.4 +/- 0.1 equiv of zinc after purification, indicating that Mca is a metalloprotein with zinc as the native metal. Kinetic studies of Mca activity with 14 substrates demonstrated that Mca is highly specific for the mycothiol moiety of mycothiol S-conjugates and relatively nonspecific for the structure of the sulfur-linked conjugate. The deacetylase activity of Mca with GlcNAc-Ins is small but significant and failed to saturate at up to 2 mM GlcNAc-Ins, indicating that Mca may contribute modestly to the production of GlcN-Ins when GlcNAc-Ins levels are high. The versatility of Mca can be seen in its ability to react with a broad range of mycothiol S-conjugates, including two different classes of antibiotics. The mycothiol S-conjugate of rifamycin S was produced under physiologically relevant conditions and was shown to be a substrate for Mca in both oxidized and reduced forms. Significant activity was also seen with the mycothiol S-conjugate of the antibiotic cerulenin as a substrate for Mca. Topics: Amidohydrolases; Amino Acid Sequence; Cloning, Molecular; Cysteine; Disaccharides; Enzyme Inhibitors; Glycopeptides; Hydrolysis; Inositol; Kinetics; Metals, Heavy; Molecular Sequence Data; Mycobacterium tuberculosis; Pyrazoles; Recombinant Proteins; Rifamycins; Substrate Specificity; Sulfhydryl Compounds | 2003 |