rifampin and miloxacin

rifampin has been researched along with miloxacin* in 1 studies

Other Studies

1 other study(ies) available for rifampin and miloxacin

ArticleYear
Interspecies scaling of excretory amounts using allometry - retrospective analysis with rifapentine, aztreonam, carumonam, pefloxacin, miloxacin, trovafloxacin, doripenem, imipenem, cefozopran, ceftazidime, linezolid for urinary excretion and rifapentine,
    Xenobiotica; the fate of foreign compounds in biological systems, 2016, Volume: 46, Issue:9

    1. Interspecies allometry scaling for prediction of human excretory amounts in urine or feces was performed for numerous antibacterials. Antibacterials used for urinary scaling were: rifapentine, pefloxacin, trovafloxacin (Gr1/low; <10%); miloxacin, linezolid, PNU-142300 (Gr2/medium; 10-40%); aztreonam, carumonam, cefozopran, doripenem, imipenem, and ceftazidime (Gr3/high; >50%). Rifapentine, cabotegravir, and dolutegravir was used for fecal scaling (high; >50%). 2. The employment of allometry equation: Y = aW(b) enabled scaling of urine/fecal amounts from animal species. Corresponding predicted amounts were converted into % recovery by considering the respective human dose. Comparison of predicted/observed values enabled fold difference and error calculations (mean absolute error [MAE] and root mean square error [RMSE]). Comparisons were made for urinary/fecal data; and qualitative assessment was made amongst Gr1/Gr2/Gr3 for urine. 3. Average correlation coefficient for the allometry scaling was >0.995. Excretory amount predictions were largely within 0.75- to 1.5-fold differences. Average MAE and RMSE were within ±22% and 23%, respectively. Although robust predictions were achieved for higher urinary/fecal excretion (>50%), interspecies scaling was applicable for low/medium excretory drugs. 4. Based on the data, interspecies scaling of urine or fecal excretory amounts may be potentially used as a tool to understand the significance of either urinary or fecal routes of elimination in humans in early development.

    Topics: Animals; Anti-Bacterial Agents; Aztreonam; Carbapenems; Cefozopran; Ceftazidime; Cephalosporins; Doripenem; Feces; Fluoroquinolones; Heterocyclic Compounds, 3-Ring; Humans; Imipenem; Linezolid; Naphthyridines; Oxazines; Oxolinic Acid; Pefloxacin; Piperazines; Pyridones; Retrospective Studies; Rifampin

2016